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Main References

This review is almost entirely based on the following references:
[1] Cordes, Moore, Ramgoolam, arXiv:hep-th/9411210
[2] Witten, On Quantum Gauge Theories in Two Dimensions, 1991
[3] Witten, Two Dimensional Gauge Theories Revisited, 1992

It is basically a miniaturized, reorganized, pedagogical subset of [1], focusing on its section 3, with
brief summary of its section 9, 10, 14 and 15. Many basic facts in this review are therefore uncited
to avoid repeated citations of [1]. All uncited claims, unless otherwise specified, can be traced back
to [1]. However, it is highly possible that I, in my infinite stupidity, misunderstood some ideas
from [1]; so please feel free to point out my mistakes.

1 Introduction

We start by writing down the usual Yang–Mills action in 2D (YM2), in Euclidean signature:

IYM2
= +

1

4e2

ˆ
ΣT

d2x
√
G Tr (FµνF

µν),
√
G =

√
detGµν (1.1)

Here we will try to follow the convention of [1], despite the fact that it is, unfortunately, not quite
self-consistent. ΣT stands for the 2D target; in the large N limit, it is possible to realize YM2 as a
string theory with worldsheet ΣW , as is proposed by D. Gross and W. Taylor, among others [4–6].

https://arxiv.org/abs/hep-th/9411210


1 Introduction 2

Note that in 2D, the g-valued curvature form F = F a
µν Ta dxµ ∧ dxν is a top form; here Ta is the

generator of Lie algebra g = LieG, and G is the compact gauge group, e.g. G = SU(N). This means
that in 2D, we have:

F = fµ, f = ⋆F, (1.2)

µ =
√
Gd2x , F a

µν =
√
Gϵµνf

a (1.3)

Here µ is the volume form on ΣT , and f is some g-valued 0-form. The original YM2 action can thus
be rewritten as:

IYM2
=

1

2e2

ˆ
ΣT

d2x
√
G Tr (f2) = 1

2e2

ˆ
ΣT

µTr (f2) (1.4)

First we would like to examine the e2 → 0 limit of this theory. This can be achieved by a Hubbard–
Stratonovich transformation1; namely, we introduce an additional g-valued field ϕ that serves as a
Lagrangian multiplier; consider:

I[ϕ,A] =

ˆ (
iTr (ϕF ) + 1

2
e2µTr (ϕ2)

)
(1.5)

Using the functional version of the integral identity:
´

dx e− e2

2 x2−ixy ∼ e−y2/(2e2), it is straightfor-
ward to verify that [2], up to an overall coefficient,

ˆ
Dϕ e−I[ϕ,A] ∼ e−IYM2

[A] (1.6)

The advantage of this formulation is that the e2 → 0 limit becomes non-singular; in fact, now we
can simply set e2 = 0, and get:

I[ϕ,A] −→ I0[ϕ,A] =

ˆ
iTr (ϕF ) (1.7)

This action is in fact topological; there is no explicit metric dependence in the action. The measure
µ comes with e2 in the I[ϕ,A] action; setting e2 → 0 eliminates the metric dependence. Integrating
out ϕ fixes F = 0, i.e. we need only sum over the moduli of flat connections. For a principal G bundle
P → ΣT , this is given by:

M0 = M(F = 0, P → ΣT ) =
{
A ∈ A(P )

∣∣∣F (A) = 0
}/

G(P ) ⊂ A(P )
/
G(P ) (1.8)

A(P ) =
{

all possible connections A on P
}

G(P ) =
{

all possible gauge transformations on P
}

The moduli space M0 is far from trivial. Flatness implies that all contractible loops correspond
to trivial holonomy; only non-trivial circles, i.e. elements of the homotopy group π1(ΣT ), may have
non-trivial holonomy. Furthermore, holonomies that differ by a global gauge transformation are by
definition, equivalent. In fact, we have [7]:

M0 = Hom
(
π1(ΣT ), G

)/
G (1.9)

Note that this only identifies the topology of M0; to compute the path integral, we need to derive
the measure on M0 following e.g. the Faddeev–Popov procedure, which is implemented in [2].

1 See Wikipedia: Hubbard–Stratonovich transformation.
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For e2 ̸= 0, the action I[ϕ,A] is metric dependent. Naturally, as e2 → 0, the path integral will
be well approximated by the topological theory, and it still contains information about the topology
of M. This is closely related to cohomological field theory.

The idea of [1] is to start from 2D Yang–Mills as a concrete example, and then use its results to
motivate a thorough study of cohomological field theory.

As is summarized in [1], topological field theories (TFT’s), largely introduced by E. Witten, may be
grouped into two classes: Schwarz type and cohomological type2. Cohomological field theories are not
manifestly metric independent; however, they have a Grassmann-odd nilpotent BRST-like operator
Q, and physical observables are Q-cohomology classes; amplitudes involving these observables are
metric independent, thus they are indeed topological. Generally speaking, a TFT need not be metric
independent; the important thing is that it computes topological invariants.

On the other hand, Schwarz type theories have Lagrangians which are metric independent and
hence, formally, the quantum theory is expected to be topological. Examples of such theories include
the e2 = 0 YM2 described above, and also the Chern–Simons theory in 3D. Also, there is a 4D analog
of the action I[ϕ,A], given by:

ˆ (
Tr (BF ) + e2 Tr (B ∧ ⋆B)

)
(1.10)

The first term with BF is also manifestly topological, similar to e2 = 0 YM2; therefore Schwarz type
theories are also called BF type theories.

Following [1], we will first review the exact solution of YM2, and then try to generalize some
aspects of YM2 for a generic cohomological field theory.

2 Exact solution of 2D Yang–Mills

2.1 Canonical quantization on the cylinder

One can perform the usual canonical quantization with IYM2
on the cylinder, with coordinates

(x0, x1) = (t, x) ∈ R1 × S1. We shall make full use of the gauge redundancies in 2D; recall that a
generic gauge transformation can be written as:

A′
µ = gAµg

−1 + g ∂µ(g
−1)

≃ Aµ +Dµ ◦ λ,
Aµ = Aa

µ(t, x), g = e−λa(t,x)Ta , (2.1)

Dµ = ∂µ +Aa
µ Ta, (2.2)

(Dµ ◦ λ)a = ∂µλ
a +Ab

µ f
a
bcλ

c, (Tb)
a
c = fabc (2.3)

Here Dµ is the g-valued covariant derivative; it acts on the g-valued gauge parameters λa(t, x) by
the adjoint representation (Tb)

a
c = fabc . It is thus possible to choose the temporal gauge A0 = 0, by

simply solving a first order ODE of λa(t, x), with respect to the variable x0 = t.

2 Cohomological type TFT’s are also called Witten type TFT’s, e.g. in [8]. However, [1] chooses to call them coho-
mological, probably to avoid confusion, since Witten has done wonderful work on both types of the theories.
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2.1.1 Complete gauge fixing

We can further reduce A1(t, x) with remaining gauge redundancies; with some t-independent, but
x-dependent g = g(x), we can preserve A0 = 0, while reducing A1(t, x) = A1(t). This is basically
the Coulomb gauge in 2D, i.e. we have ∂1A1 = 0.

Further simplifications can be achieved by working in the Schrödinger picture, or Schrödinger
representation. A nice treatment of 4D Yang–Mills from this “novel” perspective can be found in [9].
In conventional formulations of QFT, we are used to working in the Heisenberg or interactive picture,
where the fields evolve in time: A1 = A1(t) and satisfy some operator equations of motion (EOM’s),
which for free theories look identical to the classical EOM’s. Alternatively, we can take the quantum
mechanical approach, and decompose the fields at each time slice t = t0 to a set of time-independent
energy eigenstates; in the case of YM2, we have A1 = const. The time evolution is then tracked by
the wave functional Ψt[A1]. Since the gauge-fixed A1 has no spacetime dependence, we’ve actually
obtained a equivalent 0-dimensional field theory, i.e. a quantum mechanical system.

There are still remaining gauge redundancies; with another spacetime independent, global gauge
transformation, we can rotate A1 = Aa

1 Ta ∈ g to the Cartan subalgebra, i.e. the maximal abelian
subalgebra of g. Finally, we quotient A1 by the action of the Weyl group, which is the symmetry of
the Cartan subalgebra. Therefore, the physical Hilbert space of YM2 consists of states given by:

Ψ[A1], A1 = Aa
1 Ta ∈ Cartan

/
Weyl (2.4)

2.1.2 Partial gauge fixing

Alternatively, we can also work with a partial gauge fixing, e.g. we only impose the temporal
gauge A0 = 0, and try to solve for Ψt[A1(x)] by looking at the “Maxwell’s equation” in 2D. The
time evolution is taken care of by the Schrödinger equation for Ψt; for now we need only look at the
spatial constraints. We have:

D1F10 = 0, Fµν = [Dµ, Dν ] (2.5)

This is simply the YM2 version of the Gauss’s law ∇⃗ · E⃗ = 0. In YM2, we have only one g-valued
component of the field strength:

E = EaTa = F10 (2.6)

One can think of the Gauss’s law constraint as the result of integrating out A0, which imposes its
EOM δIYM2

δA0
= 0, which is precisely (2.5). However, for a gauged system, there are subtleties that we

need to look out for. One should account for the gauge volume, which can be treated properly with
Faddeev–Popov path integral, and the proper way to implement the constraints is through BRST
quantization.

Fortunately, the naïve Gauss’s law constraint does work in this example. In fact, if we solve the
Gauss’s law constraint as an operator equation of A1, we will get further gauge-fixing [9]. Alterna-
tively, if we ignore the constraint and proceed with canonical quantization, which might be more
convenient in many cases, we would expect unphysical degrees of freedom like null states to show
up, due to the unfixed gauge redundancies. The constraint can then be utilized to identify physical
degrees of freedom, by demanding that it annihilates physical states:

D1 ◦ E |Ψ⟩ = 0, E = F10 (2.7)
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Note that this idea is very much similar to old covariant quantization and the Virasoro constraint in
string theory [10]. Again, for a more rigorous treatment, we should turn to the BRST cohomology,
but for now this is sufficient.

In fact, we can actually prove (2.7) by demanding the wave functional Ψ[A1(x)] to be gauge-
invariant [9]; we shall work in the A1(x) basis, with Ψ[A1(x)] = ⟨A1(x)|Ψ⟩. The canonical momentum
operator is then given by:

E =
δ

δA1
, [E(x), A1(x

′)] = δ(x− x′) (2.8)

Just like the usual quantum mechanical P = −i ∂
∂X ; the (−i) factor is gone since we are working in

Euclidean signature.
We demand that Ψ[A1(x)] is gauge-invariant under the remaining t-independent gauge transfor-

mations, λ = λ(x):

0 = δΨ[A1(x)] =

ˆ
dx δΨ

δA1(x)
δA1(x) , δA1(x) = D1 ◦ λ(x)

= −
ˆ

dxλ(x)
(
D1 ◦

δ

δA1(x)

)
Ψ[A1(x)], E =

δ

δA1(x)

= −
ˆ

dxλ(x) (D1 ◦ E)Ψ[A1(x)], ∀ λ(x)

(2.9)

Indeed this is (2.7) in the A1(x) basis. The formal solution of (2.7) is quite similar to the Schrödinger
equation, but with path-ordering instead of time-ordering [11]:

Ψ = Ψ[W ], W = P exp
ˆ L

0

A1(x) (2.10)

From (2.10) we see that in fact there is no direct dependence of A1(x) in Ψ[A1(x)]; it only depends
on the holonomy W around the S1 circle. Note that W is similar to the Wilson loop operator, but not
quite, due to the lack of a trace Tr. Such W is not exactly gauge-invariant, but in fact gauge-covariant
with respect to the base point:

W ′ = g0Wg−1
0 , g0 = g(x = 0) (2.11)

Hence further demanding invariance under global gauge transformations requires that Ψ only depends
on the conjugacy class of W . Again we recover (2.4), namely,

The Hilbert space of YM2 is the space of class functions on G (2.12)

By the Peter–Weyl theorem for G compact we can decompose the Hilbert space by the unitary
irreducible representations (irreps) {R} of G. Consequently, a natural basis for the Hilbert space is
provided by the characters {χR} of the irreps; thus we have, relative to the W basis,

⟨W |R⟩ = χR(W ) = TrR(W ) (2.13)

This is the wave function of the R basis. Here TrR denotes trace with respect to the irrep R; recall
that W is g-valued and do not have a well-defined trace until we specify an irrep, in this case R.
This is the gauge-invariant Wilson loop operator. Note that we are considering pure YM2 without
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matter; the irrep R is not some a priori matter representation, but arises naturally3 as we consider
class functions on G.

2.2 Hamiltonian and time evolution

Let us now find the Hamiltonian for this theory. We are familiar with the Hamiltonian density in
4D: e2

2

(
E⃗2 + B⃗2

)
; here in 2D, we do not have the magnetic field B⃗, just a one component g-valued

E = EaTa = F10. Therefore,

H =
e2

2

ˆ
dxTrE2 =

e2

2

ˆ
dx δab δ

δAa
1(x)

δ

δAb
1(x)

→ 1

2
e2LTr

(
W

∂

∂W

)2

, (2.14)

Ea =
δ

δAa
1(x)

→ TaW
∂

∂W
, Tr (TaTb) = δab (2.15)

Note that we’ve followed a more convenient trace convention. In the last step we’ve restricted to the
physical Hilbert space with Ψ = Ψ(W ). Consider H action on the basis ⟨W |R⟩ = χR(W ) = TrR(W ),
we have:

Ea χR(W ) = Ea TrR(W ) = TrR(TaW ), (2.16)

H χR(W ) =
1

2
e2LTrR

(
δabTaTbW

)
=

1

2
e2L

(
δabTaTb

)
R

TrR(W )

=
1

2
e2LC2(R)χR(W ),

(2.17)

C2(R) =
(
δabTaTb

)
R

(2.18)

Here C2(R) is the quadratic Casimir of the irrep R; it is proportional to 1R, or can be treated as a
c-number when restricted to the irrep. We find out that:

The Hamiltonian H is diagonalized in the R basis and ∝ C2 (2.19)

H =
1

2
e2LC2 (2.20)

2.3 Basic amplitudes

Having diagonalized the Hamiltonian, we can immediately write down the W basis propagator
by summing over the R basis; we have:

⟨W1 |e−HT |W2⟩ =
∑
R

⟨W1 |R ⟩ e−H(R)T ⟨R|W2⟩

=
∑
R

χR(W1)χR(W
†
2 ) e

− 1
2 e2aC2(R) = Z(W1,W2; a),

(2.21)

a = LT, χ†
R(W ) = (TrRW )

†
= TrR(W †) = χR(W

†) (2.22)

This is the cylinder amplitude. Note that the combination 1
2e

2a enters together, where a = LT is
the area of the cylinder; this is evident from the action I[ϕ,A] in (1.5), where e2µ comes together as

3 This result is somewhat mysterious to me; does the sum over irreps R has a physical interpretation, e.g. like
integrating out all possible matter representations?
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3 From YM2 to general cohomological theory 7

a parameter. The area dependence is also evident from the scalar action (1.4), where we’ve noticed
that the theory is invariant under area preserving diffeomorphism, SDiff(ΣT ). From now on we will
absorb e2

2 into a, and it will be the only dimensionful parameter of the theory.
By the orthogonality relations of characters, it is straightforward to verify that the propagator

satisfy the gluing property:
ˆ

dW Z(W1,W ;T1)Z(W,W2;T2) = Z(W1,W2;T1 + T2) (2.23)

We see that YM2 has very similar properties as those from the categorical approach of CFT and
TFT, given by Segal and Atiyah [12, 13].

With the gluing property, we can see what happens when one end of the cylinder shrinks to zero
size; this is achieved by gluing one cylinder with finite size a, with another one that has a′ → 0. As
a′ → 0, the corresponding amplitude should be well approximated by the topological action I0[ϕ,A]

given in (1.7); as we’ve mentioned before, integrating out ϕ sets F = 0, which in turn forces the
holonomy W ≡ 1. The wave function is then given by a Dirac delta function:

Ψ(W ) = δ(W − 1) (2.24)

This is, up to an overall coefficient, the delta function with respect to the bi-invariant Haar measure
on the compact G. Here bi-invariance means that the measure is invariant under left and right group
multiplication, hence also invariant under conjugacy; therefore it is also a well-defined measure on G
classes, where W actually belongs. Gluing the cylinder a with the infinitesimal cylinder a′ → 0, we
find the cap (disk) amplitude:

Z(W,1; a) =
∑
R

χR(W ) (TrR 1) e−aC2(R) =
∑
R

(dimR)χR(W ) e−aC2(R) (2.25)

By now it is clear that the theory is indeed topological; there are no x-dependent, propagating
degrees of freedom. To see degrees of freedom, we must investigate the theory with Wilson loops [1]
or place it on spacetimes of nontrivial topology. In fact, we can compute the amplitudes for more
complicated surfaces by standard gluing techniques familiar from axiomatic TFT; then the theory in
a sense becomes a theory of Euclidean “gravity”, as it includes a sum over topologies [1].

3 From YM2 to general cohomological theory

We’ve learned quite a few things from our study of YM2; for example,
• A topological theory need not be manifestly metric independent;
• It is possible, and sometimes more elegant, to solve the theory without a complete gauge fixing;

These ideas can all be utilized for the study of a general cohomological field theory.
From a mathematical point of view, topological field theory is the study of intersection theory

on moduli spaces using physical methods [1, 14]. In the physical framework these moduli spaces are
presented in the general form:

M =
{
A ∈ A

∣∣∣DA = 0
}/

G (3.1)

We’ve seen an example of this, from (1.8).
Note that the usual Faddeev–Popov procedure and conventional BRST cohomology requires

gauge-fixing. Now we would like to develop an alternative method which does not rely on a specific
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gauge choice. In YM2, postponing the gauge fixing leads us to the class functions on G, which is
more convenient to work with than the gauge-fixed Cartan

/
Weyl.

More generally, we can directly work on the space of fields A before gauge fixing, and consider
G-equivariant quantities on A. Here G is generally an infinite-dimensional Lie group, the group of
all possible gauge transformations. This is the idea of equivariant cohomology.

3.1 Equivariant cohomology from “supersymmetry”

Here we will briefly illustrate the construction of a differential complex, which will be the model
for G-equivariant cohomology. We want something that is “BRST-like”, without going through the
Faddeev–Popov gauge-fixing process. The idea is to mimic the BRST field contents by introducing
ghosts, which can be systematically constructed using differential graded algebra (DGA); the grading
is the ghost number.

Note that “physical” fields such as Aa
µ and matter fields are form a g-module, where g = LieG;

to include ghost fields, we basically introduce an additional grading and work with the g[ϵ]-module.
Here ϵ is a Grassmann-odd parameter with deg ϵ = −1, and:

g[ϵ] = (g⊗ 1)⊕ (g⊗ ϵ) (3.2)

It turns out that the usual Lie algebra cohomology of this supersymmetrized Lie algebra g[ϵ] is the
same as the equivariant cohomology of the original Lie algebra g [1].

In fact, the Lie (super)algebra cohomology for g[ϵ] is precisely the BRST cohomology with b, c, β, γ
ghosts, known from superstring theory [1, 15]. Hence it’s possible to relate equivariant cohomology
with familiar Lie superalgebras. An example of this is G = U(1), whose equivariant cohomology
is given by the Lie algebra cohomology of the twisted N = 2 supersymmetry algebra in 2D [1].
The twisted algebra is obtained from the original algebra by a topological twist, which redefines the
energy-momentum tensor and makes it Q-exact, thus rendering the theory topological [16, 17]. From
the level of the algebra, we have:

L0 = {G0, Q0} (3.3)

Where L0 is the zero mode of the energy momentum.
There is a beautiful generalization of this by considering G = Diff(S1), whose corresponding

Lie algebra is given by the Witt algebra, or Virasoro algebra Virc with central charge c = 0. The
G = U(1) we’ve considered is just the global part of the local symmetry group G = Diff(S1). Similarly,
the Diff(S1)-equivariant cohomology is precisely the Lie algebra cohomology of the twisted N = 2

superconformal algebra.

3.2 Cohomological YM2

For a more concrete example, let’s go back to Yang–Mills, and consider the G-equivariant coho-
mology of the space of connections A. Again, fields are simply g[ϵ]-modules; to compute equivariant
cohomology we must construct a differential complex, which is achieved by adding ghosts. A choice
of differential complex amounts to a choice of ghosts. One of the simplest choice is given by the
Cartan model [1, 14]; we have:

• Degree 0: Aa
µ(x), Yang–Mills

• Degree 1: ψa
µ(x), 1-form ghosts

– 8 / 11 –



3 From YM2 to general cohomological theory 9

• Degree 2: ϕa(x), commuting 0-form
The BRST-like symmetry δ = [Q,−]± is given by:

δAµ = ψµ, δψµ = −Dµϕ, δϕ = 0 (3.4)

The idea is that the BRST-like symmetry δ acts like a “square-root” of the gauge transformation,
and the ϕ field acts like a gauge parameter; we have:

δ2Aµ = −Dµϕ (3.5)

On the other hand, the conventional BRST symmetry δ̃ from Faddeev–Popov acts like a gauge
transformation parametrized by a ghost; it is given by:

δ̃Aµ = −Dµc, δ̃c =
1

2
[c, c] (3.6)

One can then write down a gauge-invariant action with ghosts. For YM2, this is given by [1, 3]:

I[A,ψ, ϕ] =

ˆ (
iTr (ϕF − 1

2ψ ∧ ψ) + 1

2
e2µTr (ϕ2)

)
(3.7)

We immediately notice that this is almost identical to the I[ϕ,A] in (1.5), just with an additional ψ
term, which is actually decoupled from the other fields and can be simply integrated out. Therefore,
the theory in this form is indeed equivalent with the original IYM2 .

The ψ field, however, is far from useless. The main difficulty of computing the path integral
for a gauge field A is that we should treat the measure DA with great care. But now we have a
fermionic ψ field; note that although there is no natural measure for A or ψ separately, there is a
natural measure DADψ, since the Jacobian in a change of variables would cancel between bosons
and fermions [3].

In fact, the ψ term gives precisely the symplectic volume element on the space of connections A,
up to some normalization:

DADψ exp
(

i

4π2

ˆ
Tr

(
1
2ψ ∧ ψ

))
(3.8)

The action I[A,ψ, ϕ] thus provides a nice expression of the path integral at e2 = 0, by specifying a
measure of the flat moduli M0 in (1.8), which coincides with the result from Faddeev–Popov quanti-
zation [2]. On the other hand, Dϕ provides a natural measure on the group of gauge transformations
G. The path integral is thus automatically gauge-invariant.

Furthermore, to write down the Lagrangian for a “standard” cohomological field theory, one need
to include additional anti-ghosts, and then construct a functional V such that the Lagrangian [3]:

L = −i {Q,V } (3.9)

i.e. L is manifestly Q-exact, which in turn leads to a Q-exact energy momentum tensor [1]. We wish
also to pick V so that all fields will have a non-degenerate kinetic energy. A suitable choice of V will
then lead us to the 2D analog of Donaldson theory [3].

The cohomological YM2 constructed in this way is a “fully topological” theory of the cohomological
type; however, it is not equivalent to the physical YM2, given by actions such as IYM2

, I[ϕ,A] or
I[A,ψ, ϕ], found in (1.4), (1.5), and (3.7). The physical theory does have some degrees of freedom
beyond the topology, as evidenced by the e2a dependence.
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On the other hand, it is possible to relate the cohomological YM2 with the physical YM2, as
is explained by Witten in [3], with equivariant localization. This is precisely analogous to super-
symmetric localization; as we’ve learned before, the algebraic structures associated with equivariant
cohomology is closely related to supersymmetry. For more on this, see 11.12.3 and 15.12 of [1], and
3.2 of [3].
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