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Philosophy: The continuum limit Λ→∞ is not well-defined. Renormalization provides a way

to define the theory when Λ→∞.

Personal Belief: The only way to fully understand renormalization is through Wilson’s argu-

ments; all other “interpretations” of renormalization are only heuristic.
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1 Wilson’s Picture 2

1 Wilson’s Picture

We start with a seed theory with bare parameters: (Zφ, g,Λ)0, where g = (m,λ, · · · ) is the

collection of all possible couplings. Zφ is the coefficient of the kinetic term. We coarse-grain the

theory by integrating out some high energy modes:

φΛ0(x) ∼
ˆ Λ0

dp eip·xφ̃(p) =

ˆ Λ

dp eip·xφ̃(p) +

ˆ Λ0

Λ

dp eip·xφ̃(p)

=: φΛ(x) + χ(x)

(1.1)

DφΛ0 (x) ∼
∏
‖p‖<Λ0

dφ̃(p) =
∏
‖p‖<Λ

dφ̃(p)
∏

Λ<‖p‖<Λ0

dφ̃(p)

∼ DφΛ (x) Dχ (x)

(1.2)

Z(g0,Λ0) =

ˆ
DφΛ0 eiS[φΛ0 ]

=

ˆ
DφΛ

ˆ
Dχ eiS[φΛ+χ]

=:

ˆ
DφΛ eiS

Λ[φΛ] =: Z(g(Λ),Λ)

(1.3)

The coarse-grained parameters are given by (Zφ, g,Λ).

Subtlety: the notation above is only schematic; in practice we first Wick-rotate to Euclidean

signature, so that the momentum cutoff is easily imposed: ‖p‖ =
√
p2

0 + p2 < Λ. In Lorentzian

signature, it’s hard to define a covariant cutoff since pµp
µ = −p2

0 + p2. This process can be made

rigorous; just think of the 8-shaped contour in loop integrals.

Effective action:

SΛ[φ] = −i ln

ˆ
Dχ eiS[φ+χ] (1.4)

φ = φΛ is treated as an external source or a background field when we compute
´
Dχ. Perturbatively,

we integrate over loops with χ propagators as internal lines.

L[φ+ χ] = −Zφ
2
∂µ(φ+ χ) ∂µ(φ+ χ)− 1

2
m2(φ+ χ)2 − 1

4!
λ (φ+ χ)4

= · · ·
= L[φ] + ∆L[φ, χ]

(1.5)

SΛ[φΛ] = S[φΛ]− i ln

ˆ
Dχ ei∆S[φΛ+χ] (1.6)

If Λ . Λ0, then SΛ is almost the same as the original S, with minor corrections from the
´
Dχ

term. Note that in such regularization scheme there will be no quadratic cross terms ∼ φχ, ∂φ ∂χ in

the effective action, since they have orthogonal Fourier modes. However, there will be non-vanishing

quartic cross terms ∼ φ2χ2, φ3χ. After we integrate out χ, the φ2χ2 term will cause a shift in m2,

while the φ3χ will generate a new φ6 vertex (by a χχ contraction).

Note that Z clearly does not depend on the intermediate scale Λ, and we have:

0 = Λ
d

dΛ
Z(g(Λ),Λ) =

(
Λ
∂

∂Λ
+ Λ

∂g(i)

∂Λ

∂

∂g(i)

)
Z(g(Λ),Λ) (1.7)

This is an example of a renormalization group (RG) equation.
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1 Wilson’s Picture 3

K J

Note that the Euclidean path integral along a time circle of length β computes the thermal

partition function with inverse temperature β. This leads to an intuitive relation between β and the

cutoff Λ.

Let’s focus on the Euclidean time direction. Again suppose we lower Λ0 ; Λ by coarse-graining.

In a thermal field theory, this can be achieved not only through integrating out UV modes (as we’ve

done before), but also by enlarging the β circle. Therefore, coarse-graining corresponds to a lowering

of temperature.

Note that this is only a rough intuition, but there are more rigorous generalizations of this picture

for theories based on a compact manifold, where the size of the manifold corresponds to some energy

scale of the theory.

1.1 Free theory, scale invariance & CFT

We first observe that a massless free theory with L[φ] ∼
´

ddx (∂φ)2 is “not renormalized” when

we integrate out high energy modes. Roughly speaking, we have:

Z =

ˆ
DφΛ0 eiS[φ0]

=

ˆ
DφΛ

ˆ
Dχ eiS[φ+χ]

∼
ˆ

DφΛ eiS[φ]
√
Z#
φ

(1.8)

Integrating over Λ = sΛ0 ≤ |p| ≤ Λ0 produces the Zφ factor, where # is the total number of modes

in this range. One can give an explicit expression of # with some IR cutoff L.

On the other hand, we can restore Λ = sΛ0 back to Λ0 by rescaling. This is easy to understand

when we think of a lattice theory: to probe the IR behavor, we first “coarse-grain” by grouping points

together, effectively lowering Λ; then we “zoom out” to see the bigger picture. Rescaling Λ = sΛ0

back to Λ0 is precisely the “zooming-out” process.

Another motivation for rescaling is that we would like to compare the theories before and after

coarse-graining; this comparison only makes sense if they share the same cutoff Λ0. In summary, the

conventional definition for renormalization group flow (RG flow) contains 2 operations:

1. Coarse-graining: integrate out higher modes to obtain a low energy effective action at Λ;

2. Rescaling: restore Λ = sΛ0 ; Λ0 the original cutoff by field re-definition.

When taking Λ 7→ Λ0 = Λ/s, first note that the kinetic term
´

ddx (∂φ)2 is scale-invariant if we

rescale φ accordingly:

Λ 7→ Λ0 = Λ/s, s < 1,

x 7→ x′ = sx, φ(x) 7→ φ′(x′) = s1− d2 φ(x) (1.9)

The s1− d2 factor is consistent with the mass dimension of φ, and we have S′[φ′] = S[φ] invariant

under rescaling.
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1 Wilson’s Picture 4

The path integral measure, however, is generally not scale-invariant; we have to add back some

Fourier modes in between to return the path integral back to Λ0. Luckily, in the case of a massless

free scalar on a flat background, the additional modes happen to cancels out the Zφ factor in (1.8):√
Z#
φ DφΛ ∼

√
Z#
φ

∏
‖p‖<Λ=sΛ0

dφ̃(p) =
∏

‖p′‖<Λ0

dφ̃′(p′) ∼ Dφ′Λ0 (1.10)

Therefore the complete path integral is invariant under coarse-graining & rescaling. Zφ is also

unchanged during this process. Therefore we can simply set Zφ ≡ 1 by an appropriate normalization

of φ.

One can see how this process might fail in a curved background: in flat space the Fourier modes are

equally spaced, and rescaling DφΛ can be achived by simply adding back a total of # modes. However,

in a curved background the Fourier modes are complicated (e.g. think of spherical harmonics) and

we generally do not expect the Jacobian of DφΛ 7→ Dφ′Λ0 to cancel out the Zφ factor precisely. This

is a hint of Weyl anomaly in curved backgrounds. For a concrete discussion with path integral, see

Di Francesco et al, 5.A.

Generally, Zφ will change after rescaling:

Zφ ∼ Λ−2γφ , γφ :=−1

2
Λ
∂ lnZφ
∂Λ

(1.11)

The scaling of Zφ can be absorbed by field strength renormalization (or “wave function” renormal-

ization); i.e. if we demand φ to retain the canonical normalization such that Zφ ≡ 1, then φ must

scale with an anomalous dimension γφ:

φ(x) 7−→ φ′(x′) = s1− d2−γφφ(x) (1.12)

In practice we don’t actually redefine the scaling of φ, just simplify keep track of it using the Zφ
factor; but we should know that due to quantum corrections, the mass dimension of φ is, effectively,

∆φ =
d

2
− 1 + γφ (1.13)

In summary, we’ve argued that the classical & quantum theory of a massless free boson on flat

space is scale-invariant ; γφ = 0. In fact, this is a first example of free CFTs. CFTs are the fixed

points of RG flow.

1.2 From mass deformation to the space of theories

What about massive free theories? We do know that they don’t receive loop corrections, therefore

“invariant” under coarse-graining; however, mass do flow when we zoom out. This is very natural;

as we zoom out the energy-momentum of all modes are enhanced by a factor of s−1, and we have

m 7→ m/s. Therefore m is a relevant parameter as we flow towards IR; it grows and flows away from

the massless free CFT. For an explicitly path integral calculation (along with φ2n interactions), see

Hollowood, §2.1.

Generally, for small g we can think of the theory (g,Λ) as a deformation away from the massless

free CFT. A neat trick to stop worrying about rescaling is to re-define g as dimensionless couplings:

g(Λ) =

(
Zφ, g

(2) =
m2

(Λ)

Λ2
, g(4) = λ, g(6) = · · ·

)
(1.14)

Here we use m2
(Λ) to denote the mass after coarse-graining but before rescaling. The mass term is

then given by ∼
´

ddxm2φ2 =
´

ddx g(2)Λ2φ2. g is thus invariant under rescaling, as the rescaling
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1 Wilson’s Picture 5

factor is absorbed by the Λ factor. We also don’t have to worry about the anomalous path integral

measure, as it’s captured by the Zφ factor.

After rescaling Λ 7→ Λ0, the dimensionful mass is given by:

m′2(Λ) = g
(2)
(Λ)Λ

2
0 = m2

(Λ)

(
Λ0

Λ

)2

(1.15)

In general, the rescaled, dimensional coupling is simply the dimensionless coupling times some factors

of the initial cutoff Λ0. Therefore its Λ dependence is identical to that of the dimensionless coupling.

On the other hand, the coarse-grained, dimensionful couplings before rescaling is given by gΛ times

some power of Λ (instead of Λ0); e.g.

m2
(Λ) = g

(2)
(Λ)Λ

2 free−−−→ m2
0 (1.16)

i.e. it is constant for a free theory. Intuitively, this is because low & high energy modes are completely

decoupled in a free theory.

In summary, we have:

Fact: dimensionless couplings g(Λ) are invariant under rescaling!

To recover the dimensionful couplings:

• ... after coarse-graining but before rescaling: multiply by Λ#;

• ... after rescaling: multiply by Λ#
0 .

Here # is the mass dimension of the coupling.

1.3 From the running cutoff to the physical scales

To get to the physical amplitudes, we apply LSZ reduction (see e.g. Srednicki):

ˆ
ddx e−ip·x

ˆ
ddy e+ik·y〈φ(x)φ(y)

〉 p,k on-shell7−−−−−−−−→
−i
√
Zφ

p2 +m2 − iε
−i
√
Zφ

k2 +m2 − iε
〈p|S |k〉 (1.17)

〈
φ(x)φ(y)

〉
=

1

Z

ˆ
DφΛ e

iSΛ[φ] φ(x)φ(y) (1.18)

Here S ∼ 1+ iM(µ), and the amplitude M(µ) scale with energy µ, but is cutoff-independent.
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2 Perturbative Renormalization 6

How to relate M(µ) to g(Λ)? Note that the canonical Green function GΛ does scale with Λ!

With the help of Poincaré invariance, we have:

ZΛ

〈
φ(x)φ(y)

〉
=:GΛ

(
x, y; g(Λ)

)
= GΛ

(
l; g(Λ)

)
, ZΛ := (Zφ)Λ (1.19)

Here the physical scale is given by l = |x1 − x2|, or the center of mass momentum µ in amplitudes;

we have l · µ ∼ 1. Λ-dependence enters through Zφ. For general n-pt function, RG flow leads to:〈
φn(· · ·)

〉
=

1

Z

ˆ
DφΛ e

iSΛ[φ] φn(· · ·) = Z
−n/2
Λ GΛ

(
l; g(Λ)

)
= Z

−n/2
sΛ GΛ

(
sl; g(sΛ)

) (
s1− d2

)−n
,

(1.20)

GΛ

(
l; g(Λ)

)
= GΛ

(
sl; g(sΛ)

)(
s1− d2

√
ZΛ

ZsΛ

)n
' GΛ

(
sl; g(sΛ)

)
sn∆φ (1.21)

We see that the flow of correlation as a function of the physical scale l is related to the flow of

coupling as a function of the cutoff Λ. In terms of energy scale µ, we have:

M
(
µ; g(Λ)

)
=M

(
µ/s; g(sΛ)

)
, (1.22)

∂

∂s
⇒ µ

∂M
∂µ

= Λ
∂g

∂Λ

∂M
∂g

= β(g)
∂M
∂g

(1.23)

2 Perturbative Renormalization

In näıve perturbation theory, we wish to complete the entire path integral Z(g0,Λ0). We can

think of this as integrating out more and more high energy modes, until we reach the IR scale Λ→ 0.

When Λ � Λ0, we have no reason to believe the renormalized couplings g(Λ) are close to the

original couplings g0 at Λ0. In fact, they may differ by a large (but finite) renormalization factor Z:

g0 = Zg.

2.1 The nature of counterterms

In the above analysis, the theory flows from UV to IR. However, in reality, the IR results are

known from experiments, and we are trying to extrapolates from IR to UV.

We achieve this by tuning the bare parameters (g0,Λ0) so that after RG flow, the IR results fit

our experimental observations. If the IR couplings g(Λ) are finite and small, then since Λ� Λ0, we

expect g0 to be very large.

We often split g0 into 2 parts for convenience:

g0 = g + δg = g + (Z − 1) g (2.1)

δg is the so-called counterterm; intuitively, it’s the (large) correction that gets integrated out when

we go from Λ0 all the way to IR.

Basically, we have the following procedure:

0. Select some UV parameters (g0,Λ0)

1. Perform the RG flow: (g0,Λ0)→ (g,Λ)

2. Tune (redefine) g0 so that (g,Λ) matches with experiments

3. Use the tuned data to predicts phenomena at a different scale (g′,Λ′)
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2 Perturbative Renormalization 7

Note that the tuning of UV parameters g0 is far from unique! This is easy to understand: many

UV theories might flow to the same IR theory. For this reason, some would say that RG is a

semi-group.

However, for a renormalizable theory, we can restrict the tuning to a finite dimensional subspace

formed by the relevant couplings, since most other parameters g(i) are irrelevant and get suppressed

by Λ/Λ0 in the IR. We shall see this in more details later. After such restriction to a relevant

subspace, the RG flow is a group, and we can reverse the flow to extrapolate towards UV.

Subtlety: the tuning process described above might encounter some serious obstruction:

the tuned g0 could blow up at some finite ΛUV; this is the so-called Landau pole. This

tells us that the theory only works under some ΛUV, i.e. it is not UV complete; it’s only

an effective theory. One have to “embed” this Lagrangian into a bigger theory that works

beyond ΛUV; this is the non-trivial UV completion of an effective theory.

2.2 Perturbation

The above understanding is in fact non-perturbative and should always hold. Perturbation theory

is only a way to calculate the RG flow from UV to IR; it is reliable only if the IR coupling g is

sufficiently small. In this case we can tune (g0,Λ0) with the following recursive / iterative algorithm:

1. Perturbative calculation of RG flow: (g0,Λ0)→ (g,Λ) at O(gn)

2. Tune (redefine) (g0,Λ0) by adding counterterms, so that (g,Λ) matches with experiments

3. Increase order n and go to step 1.

The (non-)renormalizability of a theory is evident in the perturbative expansion, by counting the

superficial degrees of divergence D of the Feynman diagrams. Basically,

• Interaction vertices create loops, and loops create UV divergences. Higher order interaction

vertices create more loops, which lead to more divergences.

• External lines suppress UV divergences by factors like 1

�p
or 1

p2 .
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For a renormalizable theory, there will be no divergence for diagrams with a sufficient number

E of external legs; for a non-renormalizable theory, however, there will always be divergences, no

matter how large E is.

2.3 Renormalization schemes

There is a subtlety in the above procedure: how do we actually relate IR parameters (g,Λ) with

actual physical quantities, e.g. amplitudes M(µ)?

In fact, we’ve assumed that (g,Λ)Λ→0 gives the physical couplings that we are familiar with,

e.g. mass, electric charge and so on. This is not quite true, since physical quantities are actually

defined with scattering amplitudes. There are different choices of relating g with physical observables;

this lead to various renormalization schemes:

• On-shell / pole-mass scheme

• Minimal subtraction (MS) & modified MS (MS)

A review of these schemes can be found in most of the main references.

The lesson is that we should tune (g,Λ)Λ→0 such that it well approximates the physical couplings,

but they are still not quite the same. To actually get to the physical couplings we really need to

complete the path integral, all the way down to Λ = 0. The physical couplings are then read out

from the full quantum effective action Γ[ϕ], as we shall review later.

2.4 Renormalizability

As we’ve mentioned before, most parameters g(i) ∈ g are, in fact, irrelevant — such terms in the

Lagrangian get suppressed by Λ/Λ0 in IR. This simply arises from dimensional anlaysis: imagine

that we lower the cutoff gradually, by coarse-graining. Recall that the coupling before rescaling is

given by g
(i)
(Λ)Λ

#, which is only mildly modified as long as Λ . Λ0. By dimensional analysis,

g
(i)
(Λ) ∼

(
Λ

Λ0

)−#

(2.2)

This means that all couplings with negative mass dimensions is suppressed in the IR (at the classical

level, due to rescaling).

If the IR theory has only relevant couplings, then one should be able to recover their physical

values by tuning a finite amount of relevant couplings in the UV, and usually the tuning is unique.

This is the defining characteristic of a renormalizable theory. Basically, this means that we can

naturally obtain a UV theory by extrapolation.

On the other hand, a theory is non-renormalizable if it contains irrelevant couplings in the IR.

In this case the IR parameters g depend sensitively on small perturbations of the UV parameters g0,

and one has to tune infinitely many bare parameters to obtain the physical IR values. Such theory is

hardly fundamental, since it depends on infinitely many parameters; but it’s a good effective theory

nonetheless.
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3 Effective Action Formalism

After φΛ is completely integrated out, we have:

SΛ[φ]→W, Z(g0,Λ0) = eiW (3.1)

Note that W no longer has any φ dependence, but it is a function of (g0,Λ0), which in turn is tuned

by physical (g,Λ). W in fact contains all information about the seed theory, labeled by (g0,Λ0).

To extract this information, we probe the system with an external source J ; namely, we perturb

the original action S[φ] with a source term:

S[φ, J ] = S[φ] + J · φ, W →W [J ] (3.2)

Here J ·φ is understood as
´

dxJ(x)φ(x). Expand W [J ] in terms of J-modes, and then its coefficients

give us physical coupling constants in the IR.

Alternatively, we can define the Legendre-transformed Γ[ϕ], where:

ϕ ≡ δW

δJ
= 〈φ〉J , Γ[ϕ] = W [J ]− J · ϕ, δΓ

δϕ
= −J (3.3)

The Legendre transformation can be implemented by a Fourier (or Laplace) transform, under the

semi-classical limit ~→ 0, when the saddle point approximation applies1:

Z[J ] = exp
i

~
W [J ] = exp

i

~

(
Γ[ϕ] + J · ϕ

)
δΓ
δϕ=−J

∝ lim
~→0

ˆ
Dϕ exp

i

~

(
Γ[ϕ] + J · ϕ

) (3.4)

On the other hand, the path integral expansion in ~ has a diagrammatic interpretation: it counts

the number of loops in Feynman diagrams. All propagators contribute a factor of ~, while all vertices

carry a factor of ~−1. In the end we have:

~#edges−#vertices ≡ ~#loops− 1 (3.5)

Here (# loops) is the same as the number of faces in planar diagrams2. In the ~→ 0 limit, only tree

(0-loop) diagrams survive.

However, Z[J ] = exp i
~W [J ] itself is given by the sum over all Feynman diagrams, while at the

same time it can be reproduced by a sum over only tree level diagrams with Γ[ϕ]. Therefore, all

higher loop connections must have already been packed up inside Γ[ϕ], namely it is the quantum

effective action. In terms of correlators, we have:

〈φ(x1) · · ·φ(xn)〉 =

ˆ
Dφ φ(x1) · · ·φ(xn) exp

i

~
S[φ]

=

ˆ

~→0

Dϕ ϕ(x1) · · ·ϕ(xn) exp
i

~
Γ[ϕ] = 〈ϕ(x1) · · ·ϕ(xn)〉~→0

(3.6)

1 We’ve been cavaliar about overall factors. Here the proportionality factor is in general a functional of J , but it is a

power series in ~ starting with terms of O
(
~0

)
. Hence it can be safely dropped as ~ → 0, as we focus on the O

(
~−1

)
terms.

2 For non-planar diagrams, see physics.stackexchange.com/q/391454.
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The right hand side is a sum over tree diagrams and ϕn vertices, whose coefficient is given by:

δniΓ

δϕ(x1) · · · δϕ(xn)
(3.7)

In particular, the coefficient δ2iΓ
δϕ(x1)δϕ(x2) of the ϕ2 vertex is precisely minus the inverse of the full

propagator, i.e. for scalar fields:

i (∂2 −m2) ∼ −i (p2 +m2) (3.8)

Here m is the renomalized mass m. In general the terms in Γ[ϕ] are the renomalized vertices, which

pack up all higher loop quantum corrections. Diagrammatically, they are produced by the one particle

irreducible (1PI) diagrams. Roughly speaking, we have:

log
∑

(all diagrams) ∼
∑

(connected diagrams) ∼
∑

(tree with 1PI vertices) (3.9)

The meaning of Γ[ϕ] can also be understood order by order, from the defining Legendre trans-

formation (3.3). For example, the full propagator is given by the connected 2-point diagram:

D = 〈φφ〉c =
〈

(φ− 〈φ〉) (φ− 〈φ〉)
〉

=
1

i2
δ2iW

δJ δJ
= −i δ

δJ

(
δW

δJ

)
= −i δϕ

δJ

(3.10)

We see that indeed:
δ2iΓ

δϕ δϕ
= i

δ

δϕ

(
δΓ

δϕ

)
= i

δ (−J)

δϕ
= −D−1 (3.11)

For higher point vertices, similar results are well illustrated in §11.5 of Peskin & Schroeder. In

summary, we have:

1

in
δnZ

δJ(x1) · · · δJ(xn)
: All Feynman diagrams

Z[J ] = exp
i

~
W [J ],

1

in
δniW

δJ(x1) · · · δJ(xn)
: Connected diagrams

Z[J ] =

ˆ

~→0

Dϕ exp
i

~

(
Γ[ϕ] + J · ϕ

)
,

δniΓ

δϕ(x1) · · · δϕ(xn)
: 1PI diagrams

(3.12)
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