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Sometimes we encounter infinitesimal transformations and we’d like to integrate them to some
finite transformations. The trick of doing this is to use the fact that transformations should compose
nicely; this idea is well introduced in classical texts of group theory such as Wybourne, 1993 [1];
here we shall use it to construct the finite transformations’.

In the case of the Schwarzian derivative, a derivation following the same recipe can be found in
Blumenhagen, Liist & Theisen, 2013 [2].
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1 Stress Tensor and the Schwarzian Derivative

We will work with a well-known example: the transformation of the stress tensor T'(z) in a 2D
CFT. We know that the 77" OPE takes the following form:

/2  RTO) 91Oy _, (1.1)

z4 22 z

T(z)T(0) ~

This is related to the algebra of its modes, namely the Virasoro algebra with central charge ¢. Using
Ward identity, we can further relate this to the infinitesimal transformation of T', under the conformal
map 2 — z + €

0T (2) = — Res €(2)T(2)T(2) = —€dT — hOeT — % D%, h=2 (1.2)
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We see that T(z) = T,,(z) is almost like a tensor: the first two terms in the infinitesimal

transformation are from translations and rotations, as expected, but there is a third anomalous term
which is independent of T. Thus the integrated, finite transformation of this term should be a
functional of w(z) that is independent of T, i.e.
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L I’d like to thank F}M% %X for re-inventing this method and explaining it to me. Another good reference for this is http:
//personalpages.to.infn.it/~billo/didatt/gruppi/gruppi.html, or more specifically, http://personalpages.
to.infn.it/~billo/didatt/gruppi/liegroups.pdf.
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The full integrated transformation of 7' can then be written as:

To(2) = Topw (w) (?;j) + 1—62{111, 2}, (1.4)
Ty (w) dw? = T, (2) d2* — %{w, 2} dz? (1.5)

To find S = S[w], consider two successive transformations:
RTINS (1.6)

Here we’ve abused the symbols w, v to label both the transformations and their images: w: z — w(z2),
v:w v =v(w) =v(w(z)). Tosay that S[w].) compose nicely under successive transformations
is to say that S[w],) = {w, 2} satisfies the following chain rule:

{v,2}dz? = {v,w} dw? + {w, 2} dz* (1.7)

Generally, we can think of the chain rules as representations of the transformation group; in this
case the group product is given by the composition v o w. For example, the usual chain rule is a
representation on the cotangent bundle by the pullback (v o w)* = w* o v*; we have:

dUd :@d—wdz:w*ov*dv (1.8)

*du = —
(vow)”dv dz i dw dz

The Schwarzian derivative is just another representation of the chain rule, on the bundle of symmetric

2-differentials dz2.

To actually solve for the functional dependence S = S[w]., we consider the special case:
v=w+dw, ow=¢€ (1.9)
Going back to the chain rule, we then have:

(S[w + € = S[w]) dz® = S[w + € () dw® = 93 e dw? (1.10)

o3 9
We see that the chain rule can be re-written as functional differentials; in this form it has no
explicit dependence of z, and it’s a functional equation for S[w]) = S[w,d.w,---]. This
reveals the nature of the above 2-step transformation z — w +— v: with z — w we construct the
function w(z), while with w +— v = w + dw we consider the variation of S[w](,) w.r.t. w(z).
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Now suppose that w(z) is constructed by composing infinitesimal transformations z — z + ¢;
namely, w = w(2) is the integral curve of a series of infinitesimal transformations along e, starting
from z. From the perspective of differential geometry, w = w;(z) is the flow of vector field ¢, and
t is the flow parameter. This is precisely the exponential map that brings te in the Lie algebra to
we(z) in the Lie group.
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The crucial observation is that the functional equation (1.11) should hold for any w = w;(z).
Along the flow, we have:

Jwt =0t 3twt (112)
We then have:
83
6‘tS = (6‘Zwt)2a—wt3 5‘twt (113)

To solve the above equation, we try to complete the right-hand side into a total ¢-differential:
S = 0¢(--+). Note that:

0 1 0 o3 1 5 ’w (QPw)? Dw
= = 7 I _ — 1.14
ow  Owdz  owd (810)38 3(aw)48 +( (Ow)s (3w)4>8 (L14)

Namely, we can trade the functional derivative w.r.t. w to regular derivative 0 = d,, with a ﬁ
factor. From now on we shall drop the subscript ¢ for w = wy, but the t-dependence is not forgotten.
We thus have:

3
9,8 = 6fa,fa%j 3( = 0,0%w ( “)’ )@8@0
P P (0%0)?
= 8t% (3 ) 00w (6 ) 00w (1.15)
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Indeed, the right-hand side can be arranged into a total t-derivative; we have:

3 200 2
Slul(s) = (w2} = 2 - ;(gw) (1.16)

This is the Schwarzian derivative. The t-integration constant is fixed by requiring that {z,z} = 0.
We see that to find the finite transformation, instead of explicit integrating 0.1', we can assume
that there is a flow S[w](.) where w = w;(z); by completing the total derivative J;S along
w¢(z) with arbitrary ¢, we can recover the functional dependence S = S[w].

2 Linear Dilaton

Let’s look at another example: the linear dilaton X with infinitesimal transformation:

!/
5X = —edX —edx - *V

(0¢ + 5%) (2.1)

Here we’ve dropped the spacetime index X* ~» X. We see that it is again in the form of translation
plus a shift, and the shift is independent of the field X.

To understand this infinitesimal transformation, first recall that (86 + 56) is precisely the contri-
bution of Weyl rescaling in the conformal symmetry; we have:

2
0=0gap = (20w — L¢) gab = 2 (0w gab — Via€y]), 20w = p V €, (2.2)

This is in fact the conformal Killing equation; the generators of conformal symmetry e is the solution
to this equation, which holds for general dimension d. Here we have d = 2, and conformal generators
are given by €(z),&(2). If we further restrict to flat metric, then we have 2 6w = Je + Je.
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Therefore, the infinitesimal transformation is saying that X transforms in a non-trivial manner
under Weyl rescaling:
o'V
2
Actually, we have a similar result for the stress tensor transformation discussed above, which is

6wgab = 20w Gab, 5wX = -

2 6w (2.3)

associated with Weyl anomaly:

5,T(2) = —% 02(2 6w) (2.4)

In fact, from 6,X we can already integrate over w and recover the finite transformation for §,, X,
using the finite version of 2 6w = d¢ + J¢, namely the conformal Killing equation (2.2):

9, 00° o 1, 0o¢ do

_ _ —2w _

Jop = Gab = € Fo7a gt Jedr € T = 597 550 S Ged (2.5)

For d = 2, note that g,z = gz, = 2, after carefully summing over indices, we have:

1 507 0z 0z 0z ow 0w

—2w ww 2w 2
— = — = 0,5 = — =, = = = 8 s 26
‘ 29 wow? dwow ¢ oz oz 0Y 2.6)

% % 'V

X'(w) = X(2) — 0‘2 2w =X(2) - “ - Ine* = X(2) — “- In|ow|? (2.7)

2.1 Worldsheet Dilaton Action

We see that under Weyl rescaling, X gets an X-independent shift, proportional to the Weyl
exponent. What does this mean physically? In fact, this is a “remnant” of the worldsheet dilaton
term in bosonic string theory [3]:

St = 4730/ / d%o \/ga'R®(X) (2.8)

Although this term vanishes in the flat limit R — 0, its effects persist in the stress tensor, since the
stress tensor depends on the functional derivative of g?°, and this does not vanish when R — 0 [4]:

1 6S° Jab=0ab

TS = 4“%@ = (VaVp — gap VV,) & 225 (9,0 — 645 0°0,) ® (2.9)

Note that T, is not traceless, namely the dilaton coupling S® is generally not Weyl invariant
at the classical level, unless 9°0.® = 0, or ®(X) = ®( constant. However, note that R ®(X) comes
with an o in the Lagrangian; therefore, its contribution mixes with O(«’) loop corrections from the
other terms, and it’s possible that the total combined Weyl anomaly cancels in the presence of
a non-trivial ®(X), thus restoring Weyl invariance.

In fact, the full theory is Weyl invariant if the dilaton profile ®(X), the spacetime metric G, (X)
and gauge field B, (X) all have vanishing beta functions:

G _ pB _ % _

N2
Which gives the spacetime equations of motion for G, (X), B, (X) and ®(X). Suppose B, (X) = 0;
at 1-loop, we have:
D —26
6

We see that it’s actually possible to move away from the critical dimension D = 26 by turning on a

0=p8%=

/
- %V“Vu@ + /' VIOV, + O(a?), B, (X)=0 (2.11)

large gradient of @, while keeping the theory consistent.
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In particular, the linear dilaton theory is an exact solution of (2.10) to all loops given by:

26 —D

GMV(X) = nul/a B;AV(X) = O; (I)(X) = VHX'“’ V2 = Ga’

(2.12)

T(z) =TX +T2 = —5 :0X0X: +VI*X (2.13)

The reason that this holds to all loops is that we can define an exact CFT with this action and
stress tensor T'(z). Although T is generally not traceless, in this case its trace vanishes on-shell:
00X =0, so indeed we have conformal invariance.

Finally, by computing 7X OPE and applying Ward identity, we basically impose the trans-
formation rule (2.1) on the field X. One can thus interpret §,X as some sort of anomalous
quantum “dimension” of X in this case it is not a rescaling of X like what we usually encounter,
but is instead a shift, introduced to preserve Weyl (conformal) invariance in the quantum theory.

2.2 Finite Transformation of Linear Dilaton

Although we’ve already obtained the finite transformation (2.7) by viewing it as a Weyl rescaling,
we would like to repeat the same program for finding finite transformations, just like what we’ve done
for the Schwarzian derivative, and then confirm the above results.

In the case of linear dilaton, there are no indices of worldsheet coordinates in X, so the composition
of finite transformations F[w].) simply gives the following “chain rule”:

F[U](Z) = F[’U](w) + F[w](z) (2.14)

There is no extra dz* factors like the ones in the Schwarzian chain rule (1.7).

For simplicity, we shall restrict to the holomorphic part of the transformation. We note that

F' converts the product in the usual chain rule g—g = c%%’ into a sum. This in fact implies that

F must be proportional to log w. But let’s be patient and again consider the flow w;(z) as in the
Schwarzian case; we now have:

o'V oo Vo1 o'V
O F = — — = ————0 0wy = — Ot Ilnod 2.15
' 2 ow, " 2 ow, " g CrOw (2.15)
Indeed we have F' = —“/?V In Ow, as expected. If we include the anti-holomorphic part, we recover

the finite transformation (2.7):

In |Hw|? (2.16)
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