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1 Gravity
ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2 dΩ2 (1.1)

f(r) = 1− GM

r
+

Q2

r2
=

(r − r+)(r − r−)

r2
(1.2)

1. Event horizon(s): f(r) = 0, we have:

(a) M > |Q|, r± = M ±
√
M2 −Q2, 2 event horizons;

(b) M = |Q|, r± = M , 1 event horizon;
(c) M < |Q|, no event horizon! “Naked” singularity.

2. New coordinate: v = t+ r∗,

r∗ = r +
1

2k+
ln |r − r+|

r+
+

1

2k−
ln |r − r−|

r−
, k± =

r± − r∓
2r2±

(1.3)

We have:

dt = dv − dr∗ = dv −
(
1 +

1

2k+

1

r − r+
+

1

2k−

1

r − r−

)
dr (1.4)

= dv −
(
1 +

1

r2f(r)

r2+(r − r−)− r2−(r − r+)

r+ − r−

)
dr

= dv −
(
1 +

1

r2f(r)

(
(r+ + r−) r − r+r−

))
dr

= dv − 1

f(r)
dr (1.5)

Therefore,

(a) The new metric:

ds2 = −f(r)

(
dv − 1

f(r)
dr

)2
+

1

f(r)
dr2 + r2 dΩ2 (1.6)

= −f(r)dv2 + 2 dv dr + r2 dΩ2

It is only singular at r = 0.

Note: during the exam I panicked when I saw (1.3), and I made a very stupid
mistake in step (1.4). However, I knew what this new coordinate is trying to
achieve — it’s aiming to eliminate the coordinate singularities in 1

f dr2 by ab-
sorbing it into dv2, so I guessed the result (1.5) correctly and carried on. I hope
they gave me some points for getting the right answer, despite with some wrong
process (>_<).

(b) ∂
∂v is a Killing vector field, for the metric components are all v-independent. More
precisely, since ∂

∂v itself is a coordinate basis, we have the Lie derivative:

L ∂
∂v
gµν = ∂vgµν = 0 (1.7)
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(c)
∥∥ ∂
∂v

∥∥2 = gµνδ
µ
v δ

ν
v = gvv = −f(r), therefore, for M > |Q| we have:

• ∂
∂v timelike: r > r+ and r < r−

• spacelike: r− < r < r+
• null: r = r+ and r = r−

2 QFT

We shall restore the reasonable convention: ηµν ∼ (−,+,+,+).

1. 1PI: diagrammatic correction to the (1-particle) propagator that cannot be split into 2 discon-
nected parts by cutting one line; e.g.

2. Consider the following Lagrangian:

L = −1

2
Z(∂φr)

2 − 1

2
m2Zφ2

r −
λ

4!
φ4
r −

1

2
δZ(∂φr)

2 − 1

2
δmφ2

r −
δλ
4!
φ4
r (2.1)

The convention here is rather bizarre; normally we write down the UV Lagrangian LUV and
split it into 2 parts, one is the effective IR Lagrangian LIR and the other one is the counterterm:

LUV = −1

2
Z(∂φr)

2 − 1

2
m2Zφ2

r −
λ

4!
φ4
r

=

(
−1

2
(∂φr)

2 − 1

2
m2

pφ
2
r −

λp

4!
φ4
r

)
−

(
−1

2
δZ(∂φr)

2 − 1

2
δmφ2

r −
δλ
4!
φ4
r

)
= LIR + Lct

(2.2)

Normally, we use L to denote the UV Lagrangian LUV; this is the convention adopted by
numerous standard textbooks, incl. Peskin & Schroeder [1], Weinberg, and also Srednicki.
However, the Lagrangian in (2.1) seems to be LIR instead of LUV. Anyway, we have:

Z + δZ = 1, m2Z + δm = m2
p, λ+ δλ = λp (2.3)

Where mp, λp is the physical IR couplings, fixed by the renormalization scheme. The conven-
tion here is really confusing and somewhat inconsistent; e.g. if we choose to write the UV mass
term as − 1

2m
2Zφ2

r, then the corresponding UV interaction term should look like − λ
4!Z

2φ4
r,

but here we do not have the Z2 factor. Also, we usually use m0, λ0 to denote bare couplings,
but here it seems that they are denoted by m,λ.

We can write down the renormalized Feynman rules nonetheless, despite some sign issues due
to the conventions; to avoid further confusion, we will adopt the usual notation: m0, λ0 for
bare couplings, and m = mp, λ = λp for physical couplings. We have:

• Renormalized propagator: −i
p2+m2−iε

• Renormalized vertex: −iλ

• Counterterm φ2 vertex: +i
(
δZ(−p2) + δm

)
,

• Counterterm φ4 vertex: +iδλ
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3. The sum of all two point 1PI diagrams (no propagator on external legs) is given by:

−iM(p2) = (2.4)

The full propagator is thus:

G(p2) = + + + · · ·

= −i
p2+m2 + −i

p2+m2 (−iM) −i
p2+m2 + −i

p2+m2 (−iM) −i
p2+m2 (−iM) −i

p2+m2 + · · ·
(2.5)

With
∑∞

n=0 q
n = 1

1−q , we get:

G(p2) =
−i

p2 +m2
· 1

1− (−iM) −i
p2+m2

=
−i

p2 +m2 +M(p2)
(2.6)

Here we’ve suppressed the (−iε) prescription in the above expressions, but it’s presence is
always implied.

4. On-shell renormalization scheme — the full propagator:

G(p2) =
−i

p2 +m2 +M(p2)− iε

p2→−m2

−−−−−−→ −i

p2 +m2 − iε
(2.7)

This means that M(p2 = −m2) = 0. Furthermore, M(p2) ∼ # (p2 +m2) +O
(
p4
)
, to ensure

that the residue is 1 at the pole, we should have # ∼ 0, i.e.

M(p2)
∣∣
p2=−m2 = 0,

∂

∂(p2)
M(p2)

∣∣
p2=−m2 = 0 (2.8)

5. At 1-loop O(λ), if we do not include counterterm contributions, then there is only one diagram
contributing to M(p2):

= (−iλ) · 1
2

ˆ
dDk

(2π)D
−i

k2 +m2 − iε
(2.9)

Here 1
2 is the symmetry factor of the diagram; alternative, we can count the distinct ways of

connecting the 4 legs of the φ4 vertex and divide it by 4!, which is indeed 4×3
4! = 1

2 .

The p0 integral has poles at p20 = p2 + m2 − iε, i.e. p0 = ±
√

p2 +m2 ∓ iε, and it’s regular
everywhere else; we can thus compute the p0 integral on the C plane using a right-tilted 8-
shaped contour, which does not enclose the poles. Effectively, we’ve performed a Wick rotation
p0 7→ ip0 so that the integral happens in Euclidean p space:

−iλ

2

ˆ
dDk

(2π)D
1

k2 +m2
=

−iλ

2

A(Sd)

(2π)D

ˆ
kd dk

k2 +m2
(2.10)

Here D = d + 1, d is the spatial dimension. There are many ways to regularize this integral;
if we continue to work in general D = d + 1 dimensions, then dimensional regularization is
automatically implied. We have:

A(Sd) =
2πD/2

Γ(D/2)
,

ˆ
kd dk

k2 +m2
=

mD

m2

ˆ
td dt
1 + t2

(2.11)
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The t-integral is related to Beta functions; consider t 7→ t2

1+t2 , and we have:

ˆ ∞

0

td dt
1 + t2

=
1

2

ˆ 1

0

t
D
2 −1(1−t)−

D
2 dt =

Γ(D2 ) Γ(1−
D
2 )

2Γ(1)
=

1

2
Γ(D2 ) Γ(1−

D
2 ) =

π

2 sin πD
2

(2.12)

The last line is Euler’s reflection formula, but here we actually don’t need that since the Γ(D2 )

factor is canceled by A(Sd). In the end we have:
ˆ

dDk

(2π)D
1

k2 +m2
=

πD/2

(2π)D
Γ(1− D

2 )m
D−2 =

1

(4π)D/2
Γ(1− D

2 )m
D−2, (2.13)

=
−iλ

2

1

(4π)D/2
Γ(1− D

2 )m
D−2 (2.14)

We then have to include counterterm contributions so that the renormalization condition (2.8)
is satisfies; we have:

−iM(p2) ∼ + =
−iλ

2

1

(4π)D/2
Γ(1− D

2 )m
D−2 + i

(
δZ(−p2) + δm

)
∼ 0 + 0 · (p2 +m2) +O

(
p4
)

(2.15)
Therefore,

δZ = 0, δm =
λ

2

1

(4π)D/2
Γ(1− D

2 )m
D−2 (2.16)

Alternatively, if we are working in D = 4 = 3 + 1 dimensions, it’s easier to impose a naïve
cutoff Λ, which gives:

ˆ Λ kd dk
k2 +m2

∼
ˆ Λ

kd−2 dk +

ˆ Λ

kd dk
(

1

k2 +m2
− 1

k2

)
=

ˆ Λ

kd−2 dk −m2

ˆ Λ kd−2 dk
k2 +m2

, d = D − 1 = 3

=
Λ2

2
− m2

2
ln

(
1 +

Λ2

m2

)
,

(2.17)

Similarly, with A(S3) = 2π2, we have:

δZ = 0, δm =
λ

2

2π2

(2π)4

{
Λ2

2
− m2

2
ln

(
1 +

Λ2

m2

)}
=

λ

32π2

{
Λ2 −m2 ln

(
1 +

Λ2

m2

)} (2.18)
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