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0 Introduction & Conventions

The phase space is understood as the space of all solutions of the equations of motion (EoMs),

satisfying the boundary conditions. Alternatively, we can think of it as a collection of all possible

initial configurations of the system, and the additional symplectic structure specifies their evolutions.

This idea is best explained by Crnkovic & Witten, 1986 [1].

Traditionally we construct the phase space variables (π, φ) as follows: we first pick a special time

coordinate t, and then introduce the canonical momentum:

π =
∂L
∂φ̇

, φ̇ = ∂tφ (0.1)

Unfortunately, this procedure breaks general covariance. We would like to find a construction of

phase space that respects general covariance.

The inspiration comes from the Lagrangian treatment of field theory, where we work with:

πµ =
∂L

∂(∂µφ)
(0.2)

Which preserves general covariance. But (πµ, φ) is not a set of independent coordinates; they are

constrained by the equations of motion (EoMs). The rough idea is that we start with (πµ, φ), and

then reduce it to the independent variables (π, φ) by imposing the EoMs, and possibly, additional

constraints due to gauge redundancy.

In this note we review the covariant formalism in a systematic yet pedagogical manner. We

follow Prof. Wei Song’s lecture notes on AdS3/CFT2, which include a very nice introduction to the

covariant formalism and its application. When it comes to notations, we try to follow the conventions

of Harlow & Wu, 1906.08616 [2], with the following exceptions and extensions:

https://arxiv.org/abs/1906.08616
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• F denotes the field space including off-shell configurations: φI ,

and also background fields φB ;

the variation δ is assumed to be off-shell unless otherwise specified.

• P̃ denotes the field space including on-shell configurations only;

one can then define a symplectic form ω on P̃,

but it might be degenerate due to gauge redundancies.

• P denotes the physical phase space,

with background fields turned off: δφB |P = 0,

and with a “physical” (non-degenerate) sympletic structure

• The index I labels all fields in the theory,

including non-dynamical background fields,

which is labeled by the index B.

Differential geometry:

• Contraction between a (poly-)vector V with the first few indices of a form ω is denoted as:

V · ω = ιV ω (0.3)

In differential geometry, this is more commonly referred to as the interior product (or interior

derivative, interior multiplication, etc), but there is no need for such fancy notion as it’s just

simple contraction.

• Raising and lowering indices are denoted by ] and [ respectively; these are given the cool name

of musical isomorphisms.

For simplicity, sometimes we might omit the explicit notations of musical isomorphisms, but

they are nonetheless implied; e.g. the normal (co-)vector n can be understood as nµ or nµ.

• The Levi-Civita symbol is denoted as ε··· with no
√
|g| factor; we will try to keep the

√
|g|

explicit. Therefore, the Levi-Civita tensor, i.e. the standard volume form, is given by:

VolM =
√
|g|dDx =

√
|g| ε··· dx• ⊗ dx• ⊗ · · · ⊗ dx• =

√
|g|dx1 ∧ · · · ∧ dxD

=
√
|g| 1

D!
ε··· dx

• ∧ dx• ∧ · · · ⊗ dx•
(0.4)

We see here that our “∧” is defined by anti-symmetrizing “⊗” without averaging with a 1
D!

factor; the 1
D! in the second line is to cancel an additional contraction with the ε··· symbol. If

we raise its indices, we get:

(
√
|g|dDx)],··· =

(−1)s√
|g|

ε··· (0.5)

Here ε··· is still the Levi-Civita symbol without
√
|g| factor, and we have ε···ε

··· = D!. The

(−1)s comes from signature of the metric; for ηab ∼ diag(−1, 1, 1, · · · ) we have s = 1. By the

way we adopt the mostly plus convention for Lorentzian metric, as any sane person should do;

through Wick rotation it gets mapped to an all plus Euclidean metric.

• Hodge dual of a p-form ω is defined as contraction with the volume form:

?ω =
1

p!
ω] ·VolM ⇐⇒ η ∧ ?ω = 〈η, ω〉VolM (0.6)

〈·, ·〉 is the induced inner product on the space of p-forms. The 1
p! factor is necessary to

guarentee that ? ?ω = (−1)s · (−1)p(D−p)ω. Again the (−1)s comes from signature of the

– 2 / 18 –
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metric. In particular, for a scalar f and a vector θ, we have:

? f = f
√
|g|dDx , ? (f

√
|g|dDx) = (−1)sf, ? θ[ = θ ·

√
|g|dDx (0.7)

It’s convenient to only act ? on the form of a smaller degree to get the form of a larger degree;

in this way we don’t need to worry about the (−1)s factor. A particular useful relation is:

d ? θ[ = ? (∇µθµ) (0.8)

This is derived around (1.33). The inner product 〈·, ·〉 is particularly convenient for 1-forms; in

this case we have:

n ∧ ? j[ = nµj
µ VolM (0.9)

Diffeomorphism and the stress tensor:

• A infinitesimal diffeomorphism (diffeo) generated by vector field ξ is given by:

x 7→ x− ξ, δξφ = Xξ · δφ = +Lξφ, (0.10)

Here the sign convention is chosen such that δξφ corresponds to a positive Lie derivative along

ξ. Note that Bañados & Reyes, 1601.03616 [3] picks a unconventional Lie derivative which

contains a minus sign in its definition; we are not going to follow that. In this convention the

usual current for spacetime translation is given by:

ξ = −∂σ, jµξ = jµ−∂σ = Tµνηνσ = Tµν(∂σ)ν , (0.11)

Where Tµν is the Noether stress tensor.

• Wick rotation between Lorentzian and Euclidean signatures is defined such that:

τ = it, V 0
E = iV 0

L , (dDx)E = i (dDx)L, eiSL = e−SE , LE = −LL (0.12)

Where S =
´

dDx
√
|g| L in both cases, and V 0 is the 0-th component of some V µ. Other

scalar quantities, such as gµνV
µW ν , are left invariant. This is the convention introduced in

Polchinski, 1998 [4], Appendix A. For example, the Einstein-Hilbert action is given by1:

SL =
1

16πGN

ˆ √
−g dDxR, SE = − 1

16πGN

ˆ
√
g dDxR (0.14)

In 2D, z, z̄ = x ± iτ = x ∓ t = −u, v, where (u, v) are the lightcone coordinates. Following

Polchinski, 1998 [4], the Euclidean volume form is then given by:

dτ ∧ dx =
1

2i
dz ∧ dz̄ =

1

2
d2z , d2z = 2 dτ ∧ dx = −i dz ∧ dz̄ (0.15)

The divergence theorem in complex coordinates can then be expanded as:ˆ
R

d2z ∂aV
a = (−1)

∮
∂R

d` naV
a = (−1)

∮
∂R

V · d2z = (−1)(−i)
∮
∂R

(
V z dz̄ − V z̄ dz

)
(0.16)

The (−1) factor comes from the conventional counter-clockwise contour integral
∮
∂R

in complex

analysis, which differs from the dτ ∧ dx orientation chosen here.

1 For a closed Riemann surface in 2D, by Gauss–Bonnet theorem, we see that the Euclidean action is proportional to

genus of the surface:

SE = −
1

16πGN
4πχ(M) = −

1

4GN
χ(M), χ(M) = 2− 2g, e−SE ∝ e−

1
2GN

g
(0.13)

Note that in Polchinski, 1998 [4], the dilaton term in the Euclidean worldsheet action goes like +RΦ(X), namely

it’s missing the minus sign; this is due to the convention for the dilaton Φ: in the perturbative regime we have

〈Φ〉 = λ < 0, and thus e−SE ∼ e−λχ ∼ (g2c )g , where gc ∼ eλ < 1 is the closed string coupling.

– 3 / 18 –
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• The Hilbert stress tensor is defined with the Lorentzian action:

Tµν(x) = − 2√
−g

δSL
δgµν(x)

, Tµν(x) = +
2√
−g

δSL
δgµν(x)

(0.17)

δSL =

ˆ √
−g dDx

(
−1

2
Tµν δg

µν + · · ·
)

=

ˆ √
−g dDx

(
+

1

2
Tµν δgµν + · · ·

)
(0.18)

To understand the variational derivative here, we note that in the space of fields it’s convenient

to think of x as an index to be contracted; the contraction is implemented by
´

dDx, without

the
√
|g| factor2.

The above definition of stress tensor agrees with [2, 5] and differs from Polchinski, 1998 [4]

(the conventional string normalization) by a factor of (−2π). We shall see that this definition

agrees with (0.11) up to a total derivative.

We would like the functional dependence of Tµν = Tµν [φ,∇µφ, · · · ] to persist under Wick

rotation, just like any other tensorial quantities; therefore we have to add an additional minus

sign to the stress tensor computed with the Euclidean action SE , due to our convention (0.12):

Tµν = +
2
√
g

δSE
δgµν

, Tµν = − 2
√
g

δSE
δgµν

(0.19)

For a gravitational theory (with dynamical gµν), the total Hilbert stress tensor is the left-

hand side of the EoM, thus it vanishes on-shell. Therefore, we usually use Tµν to denote the

non-vanishing matter stress tensor.

2 An action can thus be thought of as the contraction between some fields and some operators with multiple x

“indices”: 2x,x′,···. For example, we might have some bi-local operator 2x,x′ connecting φ(x) and φ(x′). In a local

action all these operators should be diagonal in x, i.e. 2x,x′ = δD(x− x′)2x.

– 4 / 18 –
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1 Covariant formalism and Noether’s theorem

1.1 Off-shell variation on the field space

Let’s start by considering a general action with boundary terms [2]:

S =

ˆ
M

L+

ˆ
∂M

l, L = dDx
√
|g| L (1.1)

Variation δ is now treated as an exterior derivative on the space of fields. We can think of it as

an enlarged space with redundant variables (πµ, φ)I , where I labels all fields in the system. We have:

δS =

ˆ
M

δL+

ˆ
∂M

δl =

ˆ
M

EI δφ
I +

ˆ
∂M

(Θ + δl), (1.2)

We’ve defined Θ which comes from the total derivative terms of the bulk M variation, and we’ve

performed an integration by parts and reduced
´
M

dΘ =
´
∂M

Θ. Basically,

δL = EI δφ
I + dΘ (1.3)

(· · ·)I δ(dφI) = (· · ·)I d(δφI) ∼ d(· · · δφ) = dΘ , Θ ∼ (· · ·)I δφI (1.4)

Here we haven’t imposed the EoMs, thus δ is understood as an off-shell variation on the space

of fields. We will hence refers to the whole space including off-shell configurations as the field space

F , and use phase space P for on-shell configurations only.

Note that F includes possible “background” fields φB such as the static metric gµν for a field

theory defined on a curved spacetime. These fields are fixed on-shell and therefore are absent in P.

A proper treatment of background fields is nicely summarized by Bañados & Reyes, 1601.03616 [3],

but we will take a slightly different approach, as we shall see later.

Also, we will not distinguish phase space with (π, φ) coordinates and the so-called configuration

space with (φ, φ̇) coordinates; though they are indeed different, they are dual to each other and

related by Legendre transforms.

What we’ve done here is simply a rewrite of the usual variation procedure; we just re-think it

as a differential in the field space. To get to the physical phase space, we require the action to be

stationary, up to variation of the background fields, and up to terms in the future /

past boundary Σ±:

δS |P̃ =

ˆ
M

EB δφ
B +

ˆ
Σ+

(· · ·)−
ˆ

Σ−
(· · ·) =

ˆ
M

EB δφ
B +

ˆ
Σ±

(· · ·) (1.5)

This differs slightly from what we are used to in most physics literature, where we simply set δS =

0 to find the EoMs. The reason is that in physics, we usually impose the initial & final conditions, or

in other words, in & out states, and the variation at Σ± is required to vanish: δφ |Σ± = 0. Consider

the simplest example: the (0+1) D worldline action of a point particle; we have:

S =

ˆ
L =

ˆ
dtL, δS =

ˆ
EI(t) δq

I(t) + Θ
∣∣Σ+

Σ−
(1.6)

– 5 / 18 –
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EI =

(
∂L
∂qI
− d

dt

∂L
∂q̇I

)
dt , Θ =

∂L
∂q̇I

δqI = pI δq
I , pI =

∂L
∂q̇I

(1.7)

Traditionally, we impose δqI |Σ± = 0 as we fix the in & out states, and then we find the EoMs

EI = 0. Same applies to the background field variation, where we simply set δφB = 0. However,

this is slightly clumsy to implement in our new language, since δφ is now a differential form in the

phase space. We thus simply require that δS |P̃ vanish up to boundary terms at Σ±, which achieve

the same result.

Generally, we have:

δS |P̃ =

ˆ
M

EB δφ
B +

ˆ
Σ±

(· · ·) =⇒ EI 6=B |P̃ = 0,

ˆ
N

(Θ + δl)P̃ =

ˆ
Σ±

(· · ·), (1.8)

∂M = N ∪ Σ+ ∪ (−Σ−), (1.9)

Here N is the spatial boundary. In this way we’ve obtained the subspace (submanifold) P̃ of solutions

constrained by the EoMs. We are one step closer to the physical phase space; in fact this is the phys-

ical phase space P if there are no gauge redundancies in the fields, and the variation of background

fields are turned off: δφB = 0.

Besides the EoMs, the boundary integral at N should also vanish; this means that not all

boundary conditions are consistent with the theory. In fact, N is where the dual theory lives

for many holographic systems, so one would imagine that it’s highly non-trivial. Generally [2],

(Θ + δl)P̃,N = dC , dC : some 1-form on N ⊂ ∂M,

=⇒
ˆ
N

(Θ + δl)P̃ =

ˆ
∂M

dC + (· · ·) =

ˆ
∂∂M=∅

C + (· · ·) = 0 +

ˆ
Σ±

(· · ·)

(1.10)

(1.11)

(1.10) gives the allowed boundary conditions for the fields at N . A prominent example of this is

the worldsheet Polyakov action for an open string with l = 0. Explicit calculation shows that:

Θ = −dτ
√
−γ ∂σX δX (1.12)

up to some overall coefficients; see e.g. Polchinski [4]. Here φ = X is the field, (τ, σ) is the worldsheet

coordinates, and γ is the worldsheet metric. The allowed boundary conditions are given by δX = 0

or ∂σX = 0, which both corresponds to C = 0; examples given in [2] shows that a non-trivial C

arises for higher derivative theories and gravity.

By restricting to P̃, the variation δ|P̃ is understood as on-shell, since we’ve imposed the EoMs

and the boundary conditions. Also, P̃ is where we actually define our symplectic structure. However,

we will always try to first work with the off-shell variation δ in the off-shell field space F , keep

the EoMs explicit, and then impose them at the very end.

We shall see that this formalism will help us avoid confusions with boundary terms, which is best

explained by Bañados & Reyes, 1601.03616 [3]. Also, off-shell variation will be quite useful if we

want to quantize our theory, where we have to integrate over off-shell configurations as well.

1.2 Symmetry variation and the Noether current

To get back to the familiar Noether’s procedure, we need only plug in (contract with) a vector

field Xξ in the field space F , labeled by the symmetry ξ:

δξ = Xξ · δ = ιXξδ : Ω0
δ(F)→ Ω0

δ(F) (1.13)

– 6 / 18 –
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ξ 7→ Xξ is the representation of ξ in the field space, and Ω0
δ(F) denotes 0-forms, i.e. functions on F .

As an example, for diffeomorphism (diffeo), the induced variation is given by:

x 7→ x− ξ, δξφ = Xξ · δφ = Lξφ, Xξ =

ˆ
M

dDx
(
LξφI(x)

) δ

δφI(x)
(1.14)

We’ve hence defined symmetry variation δξ as some sort of directional derivative on F , acting on

Ω0(F). For its action on generic n-forms Ω•(F), the more natural definition is the Lie derivative L

on the field space, along the flow of Xξ:

δξ = LXξ = ιXξδ + δ ◦ ιXξ = Xξ · δ + δ ◦ ιXξ (1.15)

Here we’ve used Cartan’s magic formula for the Lie derivative. Note that LXξ is the Lie derivative

on the field space F , which generally differs from the Lie derivative Lξ on the spacetime M .

By now we’ve written down the above expressions (1.14) covariantly on the off-shell field space

F , in terms of the redundant coordinates φI . However, we can still interpret it as a variation on P̃,

by simple restriction.

In fact, by the definition of a symmetry ξ, we have the off-shell symmetry variation:

δξS = Xξ · δS =

ˆ
Σ±

(· · ·) (1.16)

In other words, the action of symmetries in the field space is characterized by the kernel, or zero

modes (0-modes) of δS, again up to boundary terms at Σ±.

The reasoning for keeping the boundary terms here is, however, different from the on-shell case,

where physically we require δφ |Σ± = 0. Here the reason is that we generally do allow symmetries

to act no-trivially on the in and out states. For example, time translation evolves the states

at Σ±, so it is natural to assume that it will lead to a boundary term at Σ±. We shall see that this

is indeed the case.

Also, here we do allow “generalized” symmetries to act no-trivially on the background

fields φB , but it has to combine with other variations and altogether reduce to some boundary terms

at Σ±. This is different from the treatment of Bañados & Reyes, 1601.03616 [3], but it will prove

to be convenient when we deal with background gauge fields, such as a background metric.

Intuitively, the generalized symmetries which act non-trivially on the background fields come

from some “true” symmetries in a larger system Ŝ, where the fields φB are dynamically turned

on. A prominent example is again, the static background metric gµν for a field theory on a curved

spacetime. General diffeomorphism is not truly a symmetry of the theory, since it disturbs the

background metric; however, it is truly a (gauge) symmetry when we turn on dynamic gµν . We will

come back to this example shortly.

K J

Compared to the definition of P̃, namely δS |P̃ vanishes up to δφB and Σ± terms, we see that for

a symmetry ξ, Xξ is always tangent to P̃, so that the restriction of the off-shell δξφ to P̃ (on-shell)

is well-defined, as expected.

– 7 / 18 –
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To finally arrive at Noether’s theorem, we note that:

δξS|P̃ = (Xξ · δS)
∣∣
P̃ = Xξ · (δS |P̃) =

ˆ
M

EB δξφ
B +

ˆ
Σ±

(· · ·) (1.17)

Namely, the on-shell symmetry variation, which is generally non-zero but vanishes up to Σ±

terms, can be obtained in two ways: by first computing the off-shell symmetry variation δξS and

then restricting it on shell, or by first computing the on-shell variation δS |P̃ and then inserting the

symmetry. We should get the same result either way, which means that:

0 = Xξ · (δS |P̃)− (Xξ · δS)
∣∣
P̃ =

ˆ
M

EB δξφ
B +

ˆ
Σ±

(· · ·)

=

ˆ
M

EB δξφ
B +

(ˆ
Σ+

−
ˆ

Σ−

)
(· · ·)

=

ˆ
M

EB δξφ
B +H+

ξ −H
−
ξ

(1.18)

We’ve thus obtained the charge Hξ associated with ξ. Generally, it is conserved when the back-

ground fields are unchanged under the variation w.r.t. ξ:

δξφ
B = 0 (1.19)

Otherwise the charge Hξ might change due to the contribution of δξφ
B . Some examples of this are

given in [3]. Intuitively, one can understand this as follows: through the restriction to a subsystem

where the field φB is “external” and held fixed, we are explicitly breaking some symmetries of the

larger system. The remaining symmetries are those that act trivially on φB , namely the stabilizer

subgroup, or the little group associated with φB .

The above arguments are a bit schematic; now let’s write down the (· · ·) explicitly. Let’s assume

that the off-shell symmetry variation is given by:

δξS = Xξ · δS =

ˆ
M

dKξ =

ˆ
∂M

Kξ =

ˆ
Σ±

Kξ, dKξ = δξL+ d(δξl) (1.20)

Given ξ, such Kξ can be explicitly computed; see [2, 3] for examples. The fact that we can reduce

δξS to an integral on Σ± means that the symmetry ξ must respect the boundary N ; this

actually leads to constraints on ξ [2]. For example, not all näıve diffeo will keep the boundary N

invariant. Only those that respect the boundary will be true symmetries. On the other hand, from

on-shell variation, we have:

Xξ · (δS |P̃) =

ˆ
M

EI |P̃ δξφ
I +

ˆ
∂M

(Xξ ·Θ + δξl)P̃

= 0 +

ˆ
M

EB |P̃ δξφ
B +

ˆ
Σ±

(Xξ ·Θ + δξl)

(1.21)

– 8 / 18 –
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We can then define the Noether current (form) by:

Jξ = Xξ ·Θ + δξl −Kξ (1.22)

With this we can re-write (1.18) explicitly as:

0 = Xξ · (δS |P̃)− (Xξ · δS)
∣∣
P̃ =

ˆ
M

EB δξφ
B +

ˆ
Σ±

Jξ

=

ˆ
M

EB δξφ
B +

(ˆ
Σ+

−
ˆ

Σ−

)
Jξ

=

ˆ
M

EB δξφ
B +H+

ξ −H
−
ξ

(1.23)

The above derivation is a proof of the global version of Noether’s theorem, namely charge con-

servation from Σ− to Σ+. However, there is also a local version, namely current conservation.

To see this, we note that we can always choose δξφ(x) to be compactly supported around some

point x0, by weighting it with some arbitrary, localized bump function. We can then shrink M to

surround the support of δξφ(x). This means that (1.23) actually holds around any point x0, which

further implies that dJξ = 0. This can be proven rigorously via explicit calculation; first we have:

dJξ = Xξ · dΘ + d(δξl −Kξ) (1.24)

“d” does not act on Xξ, since Xξ is a vector in the field space F and the spacetime coordinate x

in Xξ are like contracted indices, so there is actually no spacetime dependence; see e.g. (1.14). To

make this more explicit, we can write:

Θ = Θ[φ, δφ], Θξ = Xξ ·Θ = Θ[φ, δξφ], dΘξ = d(Xξ ·Θ) = Xξ · dΘ = dΘ[φ, δξφ] (1.25)

On the other hand, “d” does act on Θ, since Θ is not only a field space 1-form but also a spacetime

1-form; we have dΘ = δL− EI δφI by definition. Therefore,

dJξ = Xξ · dΘ + d(δξl −Kξ)

= δξL− EI δξφI + d(δξl −Kξ)

= −EI δξφI +
(
δξL+ d(δξl −Kξ)

)
= −EI δξφI , by (1.14),

; −EB δξφB , in P̃,

; 0, in P.

(1.26)

We’ve finally arrived at the current conservation dJξ |P = 0, which only holds on-shell, and with

background fields suppressed: δφB |P = δξφ
B |P = 0. Note that the boundary term Kξ is crucial in

all of the above derivations, so it cannot be dropped casually. Let’s go back to the point particle

example, and consider time translation ξ = ∂t; we have:

δξq
I = q̇I , Xξ ·Θ = pI δξq

I = pI q̇
I , dKξ = δξL = dt δξL = dL , Kξ = L (1.27)

We see that Kξ does not vanish, and we have precisely Kξ = L. This leads to the conserved current

(and charge) associated with ∂t, which is precisely the Hamiltonian:

H = Jξ = Xξ ·Θ−Kξ = pI q̇
I − L (1.28)

– 9 / 18 –
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1.3 Diffeomorphism in scalar field theory

A generalization of the above point particle results is to consider field theory ; we have:

δL = dDx δ(
√
|g| L)

= dDx
(√
|g| δL+ δ(

√
|g|)L

)
= dDx

√
|g|
(
δL − 1

2
gµνL δgµν

) (1.29)

Here we’ve used the fact that δ
√
|g| =

√
|g|
(
− 1

2gµν δg
µν
)
, which has the same structure as the

second term in the Einstein tensor: Gµν = Rµν − 1
2gµνR. More explicitly, the measure variation can

be computed with the Jacobi’s formula3; note the minus sign when we switch from δgµν to δgµν :

δ det g = (det g) gµν δgµν , δ|g| = |g| gµν δgµν = −|g| gµν δgµν (1.30)

Let’s now restrict to scalar field φ, where we have:

δL =
∂L
∂φ

δφ+
∂L

∂(∇µφ)
δ∇µφ (1.31)

We now use the covariant derivative since it commutes with the metric, which will soon prove to be

convenient. We now perform the integration by parts:

∂L
∂(∇µφ)

δ∇µφ = ∇µ
(

∂L
∂(∇µφ)

δφ

)
−
(
∇µ

∂L
∂(∇µφ)

)
δφ (1.32)

To convert the divergence into differential forms, we note that the “d” action on the coefficents

can be realized by any torsion-free derivatives, including the covariant derivative:

d(θ ·
√
|g|dDx) = d

(
θµ
√
|g| 1

d!
εµµ1···µd dxµ1 ∧ · · · ∧ dxµd

)
, d = D − 1

= ∇σθµ
√
|g| 1

d!
εµµ1···µd dxσ ∧ dxµ1 ∧ · · · ∧ dxµd

= ∇σθµ
√
|g| δσµ dDx

= ∇µθµ
√
|g|dDx

(1.33)

Here ∇σ does not act on
√
|g| due to metric compatibility. This fact can be conveniently re-written

with Hodge dual:

d(θ ·
√
|g|dDx) = d ? θ[ = ?∇µθµ (1.34)

With θµ = πµ δφ, πµ = ∂L
∂(∇µφ) , we can now rephrase our familiar identity (1.32) with the new

language of differential forms:√
|g|dDx (π · δ dφ) = d

(
δφ (? π[)

)
− δφ

(
d(? π[)

)
(1.35)

In this form, the identity can be proven directly by noting that the right hand side (RHS) is simply

(d δφ) ∧ (π ·
√
|g|dDx) by Leibnitz’s rule, and the left hand side (LHS) and RHS are identical since√

|g|dDx is a top form, and thus π ·
(

(d δφ) ∧ (
√
|g|dDx)

)
= π · 0 = 0.

3 See Wikipedia: Jacobi’s formula.
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1 Covariant formalism and Noether’s theorem 11

Finally, we are ready to deploy Stokes’ theorem for differential forms. We have:

E = ?
∂L
∂φ
− d(? π[) = ?

(
∂L
∂φ
− (−1)s ?d ? π[

)
= ?

(
∂L
∂φ
−∇µ

∂L
∂(∇µφ)

)
, (1.36)

Θ = (? π[) δφ = π δφ ·
√
|g|dDx = δφ

∂L
∂(∇φ)

·
√
|g|dDx = θ ·

√
|g|dDx = ? θ (1.37)

As we’ve seen before, Θ is to be integrated along ∂M , so we mostly care about its projection Θ∂M

along the induced volume form Vol∂M . We have4:

Vol∂M = ? n = n ·VolM , VolM = n ∧ ? n, n2 = 1 (1.38)

Θ∂M = θ · nVol∂M = nµθ
µ (n ·

√
|g|dDx) (1.39)

Now let’s consider diffeo x 7→ x− ξ. We then have:

δξφ = ξ · dφ , Θξ = Xξ ·Θ = ? π δξφ, (1.40)

There are various ways to compute Kξ; the “modern” way is to work with L directly, which gives:

dKξ = δξL = LξL = d(ξ · L) , Kξ = ξ · L = L (? ξ) (1.41)

We then repeat the same calculation with the “traditional” language, namely by plugging ξ into

(1.29); using the same techniques for (1.35), we demonstrate that it indeed gives the same result:

dKξ = dDx
√
|g|
(
δξL −

1

2
gµνL δξgµν

)
= dDx

√
|g|
(
ξ · dL+ L∇µξµ

)
= ? (ξ · dL) + L d ? ξ

= ? (ξ · dL) + d
(
L (? ξ)

)
− dL ∧ ? ξ

= d
(
L (? ξ)

)
+ ξ ·(((((

(
(dL ∧VolM )

= d
(
L (? ξ)

)
, indeed Kξ = L (? ξ) = ξ · L

(1.42)

Here we see explicitly that the δξg
µν contribution combines with δξL to give a total deriva-

tive. This is a hint of the diff-invariance of the theory: if we turn on dynamical gµν , then any

arbitrary ξ (compatible with the boundary condition) is a “symmetry” generator of the theory5.

On the other hand, if gµν is a fixed background field, then we have additional constraints on

ξ for it to be a “true” symmetry, namely δξg
µν = 0 since δgµν |P ≡ 0. This is precisely the Killing

equation; ξ has to be a Killing vector, which generates some isometry instead of arbitrary diffeo:

δξg
µν = Lξgµν = 0 (1.43)

4 We’ve been cavaliar about the index of θ and n, treating them as a vector θµ, nµ and also as a co-vector θµ, nµ,

without raising or lowering indices explicitly using musical isomorphisms. Whether it should be a vector or a

co-vector can be inferred from the context.

5 More precisely, only some of them generate “true” symmetry, while others just generate diffeo redundancies. We

will come back to this in the future.
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1 Covariant formalism and Noether’s theorem 12

K J

Finally, the conserved current for diffeo in scalar field theory is given by:

Jξ = ? π (ξ · dφ)− ξ · L = ? (π (ξ · dφ)− ξL) = ? jξ, jµξ = πµ (ξ · dφ)− ξµL (1.44)

The energy-momentum stress tensor Tµν is then found by plugging in ξ = −∂σ, i.e. the generator of

translations; the minus sign is due to our convention for diffeomorphism:

ξ = −∂σ, xµ 7→ xµ − ξµ = xµ + δµσ , (1.45)

Tµσ ≡ j
µ
−∂σ , jµ−∂σ = Tµνηνσ = Tµν(∂σ)ν , Tµν = −πµ∇νφ+ gµνL (1.46)

Note that for now Tµν is generally not symmetric as µ↔ ν, and only µ is the index for jµ, while

ν is an index labeling the D translations. The divergence of the current is then given by:

ξ = −∂σ, ∇µjµξ = ∇µTµ(σ) = ∇µ
(
Tµν

(
∂(σ)

)
ν

)
= gνσ∇µTµν − Tµν∇µξν (1.47)

Here we use the notation (σ) to protect the σ index from the action of ∇µ; namely, in ∇µTµ(σ) the

derivative only acts on the µ, ν index, treating it like a (co-)vector, while ∇µTµν is the usual covariant

derivative of a 2-tensor.

Note that if Tµν were a symmetric tensor, i.e. Tµν = T νµ, and if ξ = −∂σ is a Killing vector,

namely ∇(µξν) = 0, then the current conservation gets reduced to ∇µTµν |P̃ = 0, since ∇µjµξ |P̃ =

gνσ∇µTµν |P̃ = 0. This motivates us to construct a symmetric stress tensor, which we will discuss in

details shortly.

More explicitly, consider free scalar field in Lorentzian signature, then we have:

L = −1

2
∇µφ∇µφ, Tµν = +∇µφ∇νφ+ gµνL = ∇µφ∇νφ−

1

2
gµν∇ρφ∇ρφ, (1.48)

We’ve lowered the indices and restored the metric gµν for future convenience. In this case the stress

tensor is symmetric by accident, but this is generally not true; one counter-example is the Noether

stress tensor for QED; see e.g. [3].

1.4 More on charge conservation

Note: for simplicity, quantities in this sub-section are taken to be on-shell by default.

We now define the charge on a general codim-1 Σ by integrating the on-shell current:

Hξ(Σ) =

ˆ
Σ

Jξ, Jξ = Jξ|P̃ (1.49)

Charge conservation is then formulated as follows: we consider a deformation of Σ along the flow of

α, and examine its effects ∆αHξ(Σ); we have:

∆αHξ(Σ) =

ˆ
Σ

LαJξ, LαJξ = d
(
α · Jξ

)
+ α ·��dJξ,

=

ˆ
∂Σ

α · Jξ, Jξ = ? jξ,

=

ˆ
∂Σ

α · (jξ ·VolM ), ιαιjξ = −ιjξ ια,

= −
ˆ
∂Σ

jξ · (α ·VolM ),

(1.50)
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∆αHξ(Σ) = −
ˆ
∂Σ

jξ · (α ·VolM ) (1.51)

This result is very intuitive: the change of charge Hξ on the codim-1 slice Σ is given by the flux

entering the codim-2 boundary surface ∂Σ. To see this more explicitly, consider a non-vanishing α

normal to Σ; we can then decompose the volume form along ∂Σ:

α2VolM |∂Σ = α ∧ n(∂Σ) ∧
(
n(∂Σ) · α ·VolM

)
= α ∧ n(∂Σ) ∧ |α|Vol∂Σ, n(∂Σ) ⊥ α ⊥ Σ (1.52)

Here we do not demand that α has unit norm; this leads to the modified volume form |α|Vol∂Σ on

∂Σ. With such decomposition,

∆αHξ(Σ) = −
ˆ
∂Σ

jξ · (α ·VolM )

= −
ˆ
∂Σ

jξ ·
(
n(∂Σ) ∧ |α|Vol∂Σ

)
= −

ˆ
∂Σ

|α| jξ · n(∂Σ)Vol∂Σ

(1.53)

In particular, if Σ is a constant time slice orthogonal to α = ∂t, then:

∂t ⊥ Σ,
d

dt
Hξ =

ˆ
Σ

d

dt
Jξ = −

ˆ
Σ

(
∇i jiξ

)
(∂t ·VolM ) = −

ˆ
∂Σ

|∂t| jξ · n(∂Σ)Vol∂Σ (1.54)

On the other hand, if ∂Σ = ∅, then ∆αHξ(Σ) ≡ 0 for any choice of α. This means that Hξ(Σ) is

insensitive to small deformations, i.e. it’s a codim-1 topological operator.

For the free scalar field theory in flat sapcetime, with ξµ = −δµν , we have:

Pν ≡ H∂ν =

ˆ
Σ

ddxT 0
ν , T 0

ν = T 0µηµν (1.55)

The minus sign we’ve introduced in (1.46) guarantees that the conserved charge with upper

indices is the usual energy-momentum 4-vector, and T 0ν is precisely the energy mo-

mentum density:

P ν =

ˆ
Σ

ddxT 0ν (1.56)

1.5 Improvement of the stress tensor

We’ve noted above that the stress tensor obtained from the standard Noether’s procedure is

generally not symmetric. In general, we can improve the stress tensor by making use of an ambiguity

in the definition of the Noether current Jξ; note that:

Θ 7→ Θ + dY , Jξ 7→ Jξ +Xξ · dY = Jξ + dYξ , d(Jξ + dYξ) = dJξ = 0 (1.57)

Here we’ve commuted “d” past Xξ, using the same arguments as in (1.24). We see that current

conservation still holds if we add an arbitrary total derivative to Jξ. As we shall see later, this Y -

ambiguity actually has non-trivial effects in the phase space; picking the “canonical” Y then becomes

a delicate issue.

However, for the stress tensor Tµν in a diff-invariant theory, there is a natural improvement for

the current; here the diff-invariance of a theory is defined through (1.41): given an arbitrary
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1 Covariant formalism and Noether’s theorem 14

vector field ξ, the theory is said to be diff-invariant iff. [2, 5]:

δξφ
I = LξφI , δξL = dKξ , Kξ = ξ · L (1.58)

Technically we should also require that ξ generates a diffeomorphism that respects the boundary

conditions [2], but we will ignore this subtlety for now.

For a diff-invariant theory, one can then define the Hilbert stress tensor by varying the action

w.r.t. the metric gµν , or equivalently, the metric inverse gµν :

Tµν = − 2√
−g

δSL
δgµν

, δSL =

ˆ √
−g dDx

(
−1

2
Tµν δg

µν + · · ·
)

(1.59)

Again this has the same structure as the second term in the Einstein tensor: Gµν = Rµν − 1
2gµνR.

Similar to (1.30), we have:

−1

2
Tµν δg

µν = +
1

2
Tµν δgµν , Tµν = +

2√
−g

δSL
δgµν

(1.60)

We see an immediate consequence of this definition: if the metric gµν in a theory is dynamical,

then the EoM for gµν is precisely given by:

Tµν ≡ Eµν = 0 (1.61)

Namely, the total stress tensor must vanish. This is what happens in gravity; examples include

string theory, where Tab = 0 is the so-called Virasoro constraint on the worldsheet, and Einstein

gravity, where we have the Einstein equations:

0 = Eµν = TMµν −
1

8πGN
Gµν (1.62)

Here TMµν is the matter stress tensor. We now have a new puzzle: since the total Tµν = Eµν = 0

in gravity, how should we define the stress tensor for the gravitational field itself? As we shall see

later, the covariant formalism provides a neat solution for this problem. Also, from now on we

will use Tµν = TMµν to denote the non-vanishing matter stress tensor.

K J

On the other hand, given a fixed background ĝµν , we have another subtlety in the above definition:

there could be various ways to promote ĝµν 7→ gµν and vary w.r.t. gµν . In particular, if ĝµν = ηµν ,

then the Ricci scalar R ≡ 0, thus any term that is proportional to R can be added to the action

without spoiling the diff-invariance.

One can think of this process as turning on a dynamic gµν field coupled to the matter theory;

there is the usual minimal coupling, i.e. we replace ηµν 7→ gµν , ∂µ 7→ ∇µ, and then compute the

variation. In this case the matter action is cleanly separated from the gravitational kinetic terms:

S = SM [φI , gµν ] + SG[gµν ], and there is a clear definition of TMµν from SM [φI , gµν ].

However, we can introduce additional couplings between the matter fields and gµν , e.g. the dilaton

coupling [4]: √
|g|dDx (R− 2Λ) Φ[φI ] (1.63)

Where the dilaton Φ = Φ[φI ] is a functional of the fields. This term vanishes in flat space, yet

it contributes extra improvement terms to the stress tensor. This is an example of non-minimal
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coupling. In this case the gravitational action is mixed with the matter action, and we don’t have

an explicit formula for TMµν ; but usually it’s still possible to split the total (vanishing) stress tensor

into two parts:

0 = Eµν = TMµν − Gµν (1.64)

Here Gµν is the gravitational contribution. For Einstein gravity, we have Gµν = 1
8πGN

Gµν . For

dilaton coupling, we have

K J

To understand the equivalence of the Hilbert stress tensor with the Noether stress tensor, we shall

revisit the idea that Noether’s theorem is in fact a local statement, even when the symmetries

involved are the so-called “global” symmetries.

1.6 Noether current from “localized” variation

As we’ve noted before, we can always choose δεφ(x) to be compactly supported around some

point x0, by weighting it with some arbitrary, localized bump function ε(x). One can think of this

as promoting6:

δξφ; δεφ = ε(x) δξφ, i.e. Xξ · δφ; Xε · δφ = ε(x)Xξ · δφ (1.65)

Here we are considering general ξ, η which act locally on the fields; they don’t have to be diffeos for

this to hold.

We see that when contracted with δφ, we can simply replace Xε ; ε(x)Xξ. However,

note that this does not imply that Xε = ε(x)Xξ, nor does it work for contractions with general

variations such as δL. In fact, Xε is a flow in the field space F , so it should not have explicit

dependence on the x coordinate; see e.g. (1.14). By definition, the correct form of Xε should be:

Xε =

ˆ
M

dDx ε(x)
(
Xξ · δφI(x)

) δ

δφI(x)
(1.66)

We then look at the variation δεL; by definition,

δεL = Xε · δL
= εEI δξφ

I + d(Xε ·Θ)

= εEI δξφ
I + d(ε(x)Xξ ·Θ)

= εEI δξφ
I + εd(Xξ ·Θ) + (dε) ∧Xξ ·Θ

= ε δξL+ (dε) ∧Xξ ·Θ

(1.67)

On the other hand, we know that δξL is a symmetry variation: δξL = d(Kξ − δξl); we thus have:

δεL = ε δξL+ (dε) ∧Xξ ·Θ
= ε d(Kξ − δξl) + (dε) ∧Xξ ·Θ
= d

(
ε(Kξ − δξl)

)
+ (dε) ∧ (Xξ ·Θ + δξl −Kξ)

= d
(
ε(Kξ − δξl)

)
+ (dε) ∧ Jξ

(1.68)

6 This process is described in Polchinski, 1998 [4], Section 2.3 and Exercise 2.5, and a solution of this exercise is given

by [6]. We will reproduce the solution here with the language of differential forms.
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We see that we’ve recovered the Noether current Jξ with this formalism. Our calculation thus

far has been off-shell; we see that while ξ is a symmetry by construction: δξL = d(Kξ − δξl),
η is generally not a symmetry of the action: by definition, we require an off-shell symmetry

variation of the action to be a total derivative; this is not the case for δεL, as we have an extra term

(dε) ∧ Jξ which does not vanish off-shell.

We can integrate by parts once more and get:

δεL = d
(
ε(Kξ − δξl)

)
+ (dε) ∧ Jξ

= d
(
εXξ ·Θ

)
− εdJξ

= dΘε − εdJξ

(1.69)

Current conservation follows from the fact that since we pick ε(x) to be compactly supported around

some point x0, the on-shell variation of the action vanishes completely, as long as ∂M encloses the

support of ε(x); his holds for arbitrary ε(x) supported within M , which guarantees that dJξ |P̃ = 0:

0 = δεS|P̃ =

ˆ
M

δεL|P̃ =
���

���
��

ˆ
∂M

ε(x)Xξ ·Θ|P̃ −
ˆ
M

ε(x) ∧ dJξ |P̃ , dJξ |P̃ = 0 (1.70)

The on-shell condition is necessary to guarantee that δεS|P̃ = 0, and any possible boundary terms

at Σ± vanishes since it’s weighted by ε(x). Alternatively, we can see this locally by noting that:

dΘε + εEI δξφ
I = δεL = dΘε − εdJξ (1.71)

We see that the boundary term dΘε actually cancels between the left and right-hand side, therefore

even we choose some ε(x) which does not vanish along ∂M , we still have dJξ = −EI δξφI which

vanishes on-shell, as we’ve seen before.

K J

This formalism of promoting δξφ ; δεφ = ε δξφ suggests a convenient method of finding the

Noether current Jξ, without worrying about the boundary term Kξ; we need only compute δεL,

throw away the total derivatives, and arrange the final result as some factors of dε, which will

automatically include Kξ contributions and give us a conserved Jξ.

In fact, we don’t even need to impose δεφ = ε(x) δξφ; we need only require that δεφ has the

following properties: it’s compactly supported around some point x0, within the support of ε(x), and

with ε→ 1 it reduces to the usual symmetry variation δξφ:

δεφ = δεφ [ε(x)], δεφ [ε(x)=1] = δξφ (1.72)

We follow the arguments of Polchinski, 1998 [4]: consider a “Taylor expansion” in the functional space

around the “point” ε(x) = 1; up to total derivative terms, δεS would vanish if ε were a constant, so

its variation must be proportional to the gradient dε,

δεL = d
(
ε(Kξ − δξl)

)
+ (dε) ∧ Jξ +O

(
ε2
)

(1.73)

The total derivative terms must be proportional to ε(x), since it comes from the constant piece

(0-mode) of ε(x), and its contribution is simply proportional to the ε(x) = 1 contribution.
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We see that we’ve recover the result of (1.68) just from basic analysis, without assuming the

explicit form of δξφ. The rest of the arguments that leads to dJξ |P̃ = 0 follows through with no

issues. We see that as long as it satisfies some basic conditions (1.72), how we promote δξφ ; δεφ

doesn’t actually matter; in the end we will get a valid conserved current Jξ.

This result comes in handy, as the promotion of δξφ; δεφ can be taken to be the usual “gauging”

process that promotes a global symmetry to a local symmetry, by adding coordinates dependence to

the symmetry parameter: ξ ; ε(x).

K J

There will still be ambiguities as one can shift Θ by a total derivative dY , as we’ve seen before.

In fact it’s highly possible that this dε procedure described here may produce a different current,

compared with the conventional Noether’s procedure; we have:

dε ∧ (Jξ + dYξ) = dε ∧ Jξ + d(εdYξ) (1.74)

Indeed the coefficient of dε is only defined up to a total derivative. This actually provides a way to

connect the Hilbert and Noether stress tensor.

1.7 Derivation for the Hilbert stress tensor

Again consider ξµ = εµ, i.e. the generator for translations in flat spacetime; we now promote it

to some localized diffeomorphism:

x 7→ x− ξ ; x− ε(x), ξµ = εµ ; εµ(x), δξφ; δεφ = Lεφ (1.75)

We then have [5]:

δεL = dDx

(√
−g
2

Tµν δεgµν +
δSML
δφ

δεφ+
δSGL
δgµν

δεgµν

)
(1.76)
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