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1 Basics

1.1 What is the celestial sphere?

The celestial sphere, 天球, is a basic concept in astronomy. According to Wikipedia, the celestial

sphere is an abstract sphere that has an arbitrarily large radius and is concentric to the observer. All

objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere.

The idea of celestial sphere in celestial holography is almost precisely the same as that in usual

astronomy. Suppose we, the observers, are at the origin of a asymptotically flat universe; the stars

we see in the sky are null rays coming from somewhere closed to the past null infinity I−, i.e. what

we see in the night sky is precisely the celestial sphere CS− closed to I−. Similarly, there is another

celestial sphere CS+ located near I+.
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Figure 1: Penrose diamond of Minkowski spacetime, from [1]. Compared to the

standard Penrose diagram, we can see the celestial sphere more clearly in this kind of

diamond diagrams. Roughly speaking, we have I± = R±×CS±, where R± stands for

the u, v coordinates.

We will primarily work in 4D, where the celestial spheres CS± ' S2 3 (z, z̄).

ds2 = −du2 − 2 dudr + r2 dΩ2 , u = t− r, (1.1)

dΩ2 = 2γzz̄ dz dz̄ , γzz̄ =
2

(1 + zz̄)2
(1.2)

u: retarded time. These coordinates work well near I+ where t, r →∞ but u = t− r stays finite.

It’s no good around I− where u→ −∞; instead we need advanced coordinates:

ds2 = −dv2 + 2 dv dr + r2 dΩ2 , v = t+ r, (1.3)
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Note that the (z, z̄) in CS± are actually not the same coordinates, but are related to each

other by the antipodal map:

z 7→ −1

z̄
, i.e. z+ = − 1

z̄−
, z− = − 1

z̄+
, (1.4)

This is actually the more natural choice: a “free” light ray starting from z− = z ends at z+ = z.

This in fact binds I+ with I−.

Now consider a scattering process happening “around i0”, from I− to I+; this is “far away” from

the “center” where all the interactions take place, so the scattering process is almost trivial. This

gives the natural antipodal matching condition for fields around i0:

F (u, z, z̄)|I+→i0 = F (u→ −∞, z, z̄) ≡ F (z, z̄) = F (v → +∞, z, z̄) = F (v, z, z̄)|I−→i0 (1.5)

Note that this antipodal matching condition will prove crucial to our discussions later on.

1.2 Why do we want to study that?

1. As an approach to flat holography. Another interesting observation: one can do some sort

of a “double holography” by uplifting AdS3/CFT2; this discussed in e.g. [2, 3].

I+

I−

i0

i−

i+

H3

dS3

Figure 2: Hyperbolic slicing of Minkowski, taken from [1].

One can implement the Euclidean holography EAdS3/CFT2 in the red patches,

along a specific time slice of the causal future [2, 3]. On the other hand, in the blue

Rindler patches we can apply Lorentzian dS3/CFT2.

Note that in the dS3/CFT2 here, although the bulk dS3 is Lorentzian, the dual CFT2

is again a Euclidean theory living at I±, which is very different from the usual global

AdS3/CFT2, where the CFT2 is a Lorentzian theory living at i0.
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For more on of dS/CFT, see1:

• The dS/CFT paper by Strominger, hep-th/0106113 [5],

• Also Witten, hep-th/0106109 [6],

• And Maldacena’s comments: astro-ph/0210603 [7].

This flavor of dS/CFT is far more ambiguous than the usual AdS/CFT and somewhat “sus-

picious”; see Maldacena’s comments in [7] and Susskind’s recent talk at IAS.

2. As part of the universal IR structure.

• IR: Integrate out massive modes → massless particles;

• Enhanced symmetries in the IR: asymptotic conformal-like symmetries (e.g. BMS);

• IR physics largely “regulated” by symmetries.

There is a sense of IR universality: similar structures appear in all kinds of gauge theory,

including gravity.

Asymptotic Sym

Vacuum Ward
identitytransition IR

Memory
Fourier Soft

effects tranform Theorems

f E s Symmetries

Grav
displacements Supertranslations

µ
The softhairproposal

at a
eg 1810.01847Blackhole at horizon

Electric colory Large gaugesymmetries

Figure 3: The universal IR triangle, modeled after the one in [1].

2 Massless Scattering

IR divergences in QED: Every time we breathe, an infinite number of soft photons and gravi-

tons are produced. Usual resolution in QFT: cutoff & resummation of diagrams, but it’s hard to

understand why it works; the reason: symmetries!

1 We can read these papers in future journal clubs. Fun facts: just before hep-th/0106113, we have arXiv:hep-

th/0106112 which is the famous AdS two-sided black hole paper by Maldacena.
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Figure 4: Resummation cures IR divergences in the usual diagrammatic analysis of

QFT; this is an illustration of the amplitude for Bhabha scattering, taken from [1].

Such infinite sum of infinites doesn’t make sense mathematically, but this procedure

can be made more rigorous with the help with renormalization, as we add counterterms

to suppress each divergence.

Antipodal identification→∞ amount of conserved charge (in the IR limit). Consider any function

ε on Minkowski space such that:

ε = ε(u, z, z̄)|I+ = ε(v, z, z̄)|I− (2.1)

In particular, it obeys the boundary condition near i0:

ε(u, z, z̄)|I+→i0 = ε(z, z̄) = ε(v, z, z̄)|I−→i0 (2.2)

With such ε(z, z̄), charge conservation is almost tautological, as both ε and the field F obey the

antipodal identification; for example, in QED we have:

Q−ε :=

ˆ
I−

{
ε(v, z, z̄) (? j) + dε ∧ ?F (v, z, z̄)

}
=

ˆ
I−

d
{
ε (?F )

}
=

ˆ
CS

I−→i0

(?F )(v, z, z̄) ε(v, z, z̄)
∣∣
v→+∞

=

ˆ
CS

I−→i0

(?F )(z, z̄) ε(z, z̄)

=

ˆ
CS

I+→i0

(?F )(u, z, z̄) ε(u, z, z̄)
∣∣
u→−∞ = Q+

ε

(2.3)

Here we’ve used Gauss law (Stokes’ theorem), and we’ve assumed no flux due to massive particles

passes through the i± endpoints. With ε = const. we recover charge conservation; with general ε(z, z̄)

we can construct ∞ many conserved charges.

In the above derivation we’ve taken a general ε(u, z, z̄) and ε(v, z, z̄) defined near I±, but note

that as the charge reduced to a codim-2 integral on the CS closed to i0, only the angular dependence

ε = ε(z, z̄) survived; this function actually corresponds to the asymptotic symmetries of QED.

Our derivation here is similar to some popular treatment of conformal symmetries (see e.g.

Polchinski [8], section 2.4): we first formally construct a conserved current, in this case:

? J = ε(v, z, z̄) (? j) + dε ∧ ?F (v, z, z̄) = d(? k) , (? k) = ε (?F ) (2.4)

This conserved current actually gets reduced to the conserved 2-form ? k, and the charge is integrated

at a codim-2 surface. This is a common feature of gauge fields. And then, we try to find the
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corresponding asymptotic symmetries; this is like running the Noether’s procedure backwards. After

promoting Qε to an operator, we see that the asymptotic gauge symmetries are indeed generated by

ε(z, z̄), and the u, v-dependence drops out:

r →∞, iδεAµ ≡ [Qε, Aµ] = i∂µε, ε = ε(z, z̄) (2.5)
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Figure 5: Worldlines of massive and massless particles traveling through the Penrose

diamond, taken from [1]. Note that the worldlines of massive always pass through i±.

Incoming / outgoing asymptotic states are then organized by asymptotic symmetries. If we

restrict to massless scattering, I± are nice “Cauchy surfaces”. The asymptotic states can then be

reduced to operator insertions on a celestial sphere CS.

After understanding massless scattering, we can then extend the results carefully to include

massive particles, which travels from i− to i+. The EAdS slicing mentioned above is a nice way to

“regularize” the singular behavior around i±. They correspond to operators that are smeared on

CS.

2.1 Soft theorem & memory effect

Ward identity:

0 = 〈out|
[
Qε,S

]
|in〉 (2.6)

When expanded, gives constraints to the S matrix elements; this gives precisely the soft theorem. In

fact the
´
I+

{
dε ∧ ?F (u, z, z̄)

}
term creates zero energy “soft” photons with transverse polar-

ization ∂αε, α = z, z̄, namely it shifts the ∞-ly degenerate vacuum.

The same mechanism leads to the memory effect; one can think of them as same equations for

scattering but one in momentum space and the other one in position space.
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Figure 6: Gravitational memory effect, taken from [1]. Amazingly memory effects

are very realistic physics and there has been many proposals to measure this in real

experiments, both for gravitational memory and other memory effects.

2.2 More on asymptotic symmetries

Boundary conditions: suitable choice of asymptotic falloffs and gauge conditions;

ASG =
allowed gauge symmetries: repect boundary conditions

trivial gauge symmetries: act trivially on boundary data (charges)
(2.7)

e.g. In asymptotically flat 4D gravity, if we restrict to Lorentz plus “small translations”, we obtain

BMS4 = BMS+ × BMS− ⊃ Poincaré, i.e. it is ∞-ly larger than the isometry of Minkowski!

However, this is not the full story yet; the conventional BMS is “both too big and too small” [1]:

“too big” because BMS+ and BMS− should in fact be bound together by the antipodal map; what

remains is only the diagonal subgroup; “too small” because we can generalize Lorentz transformations

to superrotations, just like we generalize translations in Poincaré to supertranslations in BMS.

Note that according to [1], analyses of ASG are “more of an art than a science”, in part because

of ambiguities in the choice of boundary conditions, which are often only a posteriori justified.

Let’s first see in detail how we find BMS+. We fix Bondi gauge, which is just (1.2) plus small

fluctuations with desired falloffs, and then solve the Killing equation:

Lζg = 0 (2.8)

Naturally ζ ∈ so(3, 1) is part of the solutions, i.e the 6 Lorentz generators; these are large O(r)

Killing vectors around I±. We then consider small transformations around I+, by imposing that

the vector field is O(1) at large r in an orthonormal frame.

ζu, ζr ∼ O(1), ζz, ζ z̄ ∼ O
(

1

r

)
(2.9)

The solution of the Killing equation is then given by an ∞-ly generated supertranslations

parametrized by ε = ε(z, z̄),

ζ = ε ∂u −
1

r

(
(∇zε) ∂z + (∇z̄ε) ∂z̄

)
+ (∇2ε) ∂r, ε = ε(z, z̄) (2.10)

– 7 / 10 –



2 Massless Scattering 8

I+
�

I�
+

I+

I+
+

I�
�

I�

1

Figure 7: Supertranslations on I+, taken from [1].

We have BMS+ = Supertranslations+ ∗ Lorentz. Similar result holds for BMS−. If we relax the

“small” restrictions for ζ, we find that the Lorentz part gets enhanced to superrotations:

ζ = Y z∂z +
u

2
(∇zY z) ∂u + (complex conjugates), Y z = Y z(z), Y z̄ = Y z̄(z̄) (2.11)

The calculation of conserved charges in gravity is similar to that in gauge theory, but now we

already have the symmetry in terms of diffeomorphic generators, thus we need only run the usual

Noether’s procedure (“forwards” instead of “backwards”, compared with what we did in gauge the-

ory), to get the conserved charges.

Again we integrate the conserved current on the codim-1 I±, and it gets reduced to an integral

of the codim-2 CS near i0. ε = 0 corresponds to ζ ∝ ∂u, and the conserved charge is the total

Bondi mass; for Kerr spacetimes in the usual conventions, the conserved charge is exactly the mass

parameter M .

2.3 Scattering on the celestial sphere

Usually we use 4-energy momentum Pµ to label asymptotic states, but for massless particles

it’s more natural to use boosts [4, 9]: note that a boost along ~p of a null pµ = (|~p|, ~p) only rescales

its magnitude: pµ 7→ λpµ. This corresponds to dilations on the celestial CFT.

T ∼ ∂x, f̃(p) ∼
ˆ

dx e−ipxf(x) (2.12)

B ∼ ω ∂ω, f̃(∆) ∼
ˆ

dω

ω
ω∆f(ω), pµ = ε ω qµ(z, z̄) (2.13)

qµ = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) is a standard 4-momentum constructed only with the celes-

tial direction (z, z̄). ω is the energy (frequency), and ε = ±1 (for outgoing and ingoing particles

respectively. This is a so-called Mellin transform, with boost weight: ∆.

When combined with spin, we can similarly define (h, h̄) for the 2D celestial sphere, ∆ = h+ h̄;

Conformally soft : h→ 0 or h̄→ 0. Soft theorem → conformal soft theorem; see [4].
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Figure 8: Scattering reduced onto the celestial sphere, taken from [1].

A Symmetries of asymptotically flat spacetime
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