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0 Introduction

Since the discovery of AdS/CFT duality [1], we have greatly furthered our understanding

of quantum gravity in asymptotically AdS backgrounds. However, there are plenty of

non-AdS geometries in our real worlds, including:

• The Kerr metric of a rotation black hole, which ... ;

• The asymptotically flat / Minkowski spacetime, which well approximates our current

universe at a smaller length (and time) scale;

• The asymptotically de Sitter spacetime, which well approximates our current (and

future) universe at a larger length scale, and also during the period of inflation;

• The FRW metric (or more precisely, the Friedmann-Lemâıtre-Robertson-Walker [2–

5] metric), which describes the evolution of our homogeneous and isotropic universe

from the big bang to its ... ;

• and more ...

Much less is known about quantum gravity in these backgrounds.
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1 Brief review of AdS3/CFT2

2 Bottom-up approach: from asymptotic symmetry

3 Top-down approach: from string theory

String theory is a self-consistent theory of quantum gravity.

The first example of a microscopic counting of black hole entropy, discovered by

Strominger-Vafa [6], comes from the D1-D5-P system in string theory.

The first incarnation of holographic principle was realized by Maldacena [1], by a stack

of D3 branes in type IIB string theory.

3.1 The D1-D5-P system and its IR limit

Let us look at the D1-D5-P brane configuration in type IIB string theory. This is well-

reviewed in [7]. This configuration allows for an open string description and a closed string

description.

Geometry R4,1 S1 M4 = T 4,K3

Direction 0 1, 2, 3, 4 5 6 7 8 9

# D5 = Q5 × × × × × ×
# D1 = Q1 × ×

P × ×

Table 1. Brane configuration of the D1-D5-P system. Here we are considering type IIB string

theory on flat 6D spacetime, with a compactified x5 ∈ S1 direction, along with an internal M4

manifold. We use “×” to mark the directions xµ that an object occupies. Here µ = 0, 1, · · · , 9.

The D5 branes wrap the compactM4, while the D1 branes are localized onM4. Both

the D1 and D5 branes extend along the fifth direction x5, which is compactified to a circle

S1 with a large radius.

Open string excitations on the branes carry momentum and winding. Due to the

large radius of S1, we can focus on the momentum modes P along x5 ∈ S1 and neglect

the winding modes. On the other hand, we will neglect momentum modes along the M4

directions, since M4 is assumed to be compact and small.

3.1.1 Closed string picture: gravity on AdS3 background

In the IR limit, type IIB string theory is described by the low energy effective action of

type IIB supergravity. The field content and the action of type IIB supergravity are well

reviewed in the literature; see e.g. Appendix H of [8]. In particular, there is a pair of
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2-form gauge potentials in type IIB supergravity. One of them is the NS-NS field B2, and

the other is the R-R field C2. The D1 branes are electrically charged under C2, while the

D5 branes are magnetically charged under C2.

The bosonic part of the string frame action is then given by [ citations needed ]:

1

16πG

∫
d10x

√
−g
(
e−2φ

(
R+ 4 (∇φ)2 − 1

12
H2
)
− 1

12
F 2

)
, (3.1)

H = dB2 , F = dC2 (3.2)

where H and F are the 3-form field strengths, H2 = HµνρH
µνρ ∝H ∧ ?H, and similar for WL: convention

for the

coefficients?
F 2. After dimension reduction of the compact M4, the equations of motion admit a black

string solution in 6D, where the metric is given by [ citations needed ]:

ds2 = (f1f5)−1/2

(
−dt2 + dφ2 +

r2
0

r2
(coshσ dt+ sinhσ dφ)2

)
+ (f1f5)+1/2

(
dr2

1− r2
0/r

2
+ r2 dΩ2

3

)
, φ ∼= φ+ 2πR,

(3.3)

where f1 = 1 +
r2

1

r2
, f5 = 1 +

r2
5

r2
(3.4)

The parameters in this supergravity solution can be related to the brane construction as

follows:

• φ ≡ x5 is the compactified S1 direction along the D1 brane, normalized such that

φ ∼= φ+ 2πR, where R is the large radius of the S1 circle.

Upon dimension reduction of the φ direction, this 6D black string solution will become

a 5D black hole solution. In fact the resulting 5D black hole solution is precisely the

Strominger-Vafa black hole [6], which serves as the first example of a microscopic

counting of the black hole entropy.

• r0 marks the horizon of the black string, and it is related to the open string momentum

P attached to the branes: P ∝ r2
0 sinh 2σ.

• r2
1 and r2

5 are related to the charges Q1 and Q5.

We further note that the above black string solution is asymptotically flat, consistent

with our brane construction in string theory. On the other hand, if we zoom in to the near

horizon region of this black string solution, we discover an AdS3 × S3 geometry. This can

be achieved by setting:

`2 = r1r5, r 7→ λ`r, r0 7→ λ`r0, t 7→ t`/λ, φ 7→ φ`/λ, (3.5)

where ` is the AdS radius, and now the φ coordinate is normalized such that φ ∼= φ+ 2π.

More specially,
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• For extremal black string with r0 = 0 and thus P = 0, the near horizon limit leads

to the zero mass BTZ geometry, with an additional S3 factor:

ds2 = `2
(
r2(−dt2 + dφ2) +

dr2

r2
+ dΩ2

3

)
(3.6)

• For the near-extremal case with generic r0, σ, the near horizon limit leads to the

rotating BTZ geometry, again with an additional S3 factor:

ds2 = `2
(
r2(−dt2 + dφ2) +

dr2

r2 − r2
0

+ r2
0 (coshσ dt+ sinhσ dφ)2 + dΩ2

3

)
(3.7)

It is convenient to define the left and right-moving temperature:

TL =
1

2π

r0 e
σ

`2
, TR =

1

2π

r0 e
−σ

`2
(3.8)

On the other hand, the Hawking temperature TH of this solution can be computed, and is

given in terms of TL, TR as follows:

2

TH
=

1

TL
+

1

TR
(3.9)

Within the framework of string theory, one can understand the IR black string geom-

etry as the result of “integrating out” the dynamics of the branes, which includes the open

string excitations. This process deforms the background geometry, and we end up with WL: accurate?

a closed string theory on the black string background. The near horizon limit brings us

further to the IR fixed point, where the far region dynamics decouple and we are left with

the AdS3 geometry.

In other words, strings on AdS3×S3×M4 is understood as the closed string description

of the IR fixed point of the D1-D5-P system.

3.1.2 Open string picture: worldvolume CFT2 and the duality

On the other hand, we can consider the worldvolume theory of the brane construction.

This provides the open string description of the D1-D5-P system.

After dimension reduction of the compact M4, we have a (1 + 1) dimensional QFT

living on the D1-D5 branes. This is a supersymmetric gauge theory with N = (4, 4)

supersymmetry. Similar to our previous discussions, we can consider the IR limit of this

system. It should flow to an IR fixed point, which is a (1 + 1) dimensional superconformal

field theory (SCFT2).

The central charge of this SCFT2 can be read off from the field contents of the world-

volume theory: the number of bosonic fields is given by [ citations needed ]:

4Q1Q5 (3.10)

and same for the fermions. The factorQ1Q5 comes from the open string excitations between

the D1 and D5 branes, while the factor of 4 comes from the fact that the D1 branes can
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move inside the D5 branes along the compact M4 directions. In the end we have the WL: is this

language

accurate?
central charge:

c = 1× 4Q1Q5 +
1

2
× 4Q1Q5 = 6Q1Q5 (3.11)

We have thus discovered two equivalent descriptions of the D1-D5-P system, summa-

rized as follows: Far-region dynamics

+

Strings on AdS3 × S3 ×M4

 =

 Far-region dynamics

+

SCFT2 with target M4


Closed string picture Open string picture

The far-region dynamics decouple on both sides, and we have the following proposal of an

AdS3/CFT2 duality [ citations needed ]:

Type IIB string theory on AdS3 × S3 ×M4

= Marginal deformations of some N = (4, 4) SCFT2 with target M4

(3.12)

Note that both sides of the duality includes a non-trivial moduli [ citations needed ]. In

particular, the SCFT2 on the right-hand side is proposed to be a symmetric orbifold theory

[ citations needed ], together with its exactly marginal deformations along the conformal

manifold. WL: elaborate?

3.2 Type IIB string theory with NS-NS flux

Due to its non-trivial coupling to the R-R field C2, the D1-D5 system is difficult to deal with

on the worldsheet, within the framework of the RNS (or NSR) formalism. This difficulty

can be avoided by considering its S-dual, the NS1-NS5 system.

First let us recall the SL(2,Z) duality of type IIB string theory, reviewed in §12 and

§14 of [9]. In particular, the strong-weak S-duality is one of the generators of the SL(2,Z)

action. When acted on the field strengths H = dB2 and F = dC2, it’s given by:

S :

(
H

F

)
7−→

(
0 1

−1 0

)(
H

F

)
=

(
F

−H

)
, (3.13)

H = dB2 , F = dC2

We note that S-duality exchanges the field strengths H and F . On the other hand, the D1-

D5 system couples to C2 (electrically for D1, and magnetically for D5), while the NS1-NS5

system couples to B2. Therefore S-duality corresponds to a map:

S :
Q5 D5 branes 7−→ k = Q5 NS5 branes

Q1 D1 branes 7−→ p = Q1 NS1 branes
(3.14)

We can then repeat the analysis in §3.1 and obtain a similar black string solution in

6D. By taking the near horizon limit, we further obtain an asymptotically AdS3 geometry,
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namely the BTZ solutions as described in §3.1, but now with NS-NS flux instead of R-R

flux. In particular, for P = 0 we have the massless BTZ solution [ citations needed ]:

ds2 = k
(
dρ2 + e2ρ dγ dγ̄

)
, (3.15)

B2 =
1

2
Bµν dxµ ∧ dxν = −k

2
e2ρ dγ ∧ dγ̄ , e2Φ =

k

p
, (3.16)

where we note that there is a non-trivial B-field and a dilaton profile Φ.

Why are we interested in this S-dual system? As we’ve mentioned before, unlike the

original D1-D5 system, the NS1-NS5 system admits a worldsheet description as an RNS

superstring theory. Therefore we have a well understood worldsheet CFT2 for the bulk

string theory. Furthermore, based on this worldsheet CFT2, we are able to construct

explicitly the dual CFT2 on the asymptotic boundary of the spacetime. This is sometimes

referred to as the spacetime CFT2. Therefore the NS1-NS5 system serves as a realization of

AdS3/CFT2 where both sides of the holographic duality are, in some sense, under control.

3.2.1 The worldsheet CFT2

The bosonic action of the worldsheet theory is given by the familiar non-linear sigma model

[ citations needed ]: WL:

conventions?

S = − 1

4πα′

∫
d2z
√
−η
(
ηabGµν(X) + εabBµν(X)

)
∂aX

µ∂bX
ν

=
k

2π

∫
d2z

(
∂ρ ∂̄ρ+ e2ρ ∂γ̄ ∂̄γ

) (3.17)

where in the second line we’ve restricted to the AdS3 part and plugged in the BTZ solution

given in (3.15) and (3.16). We see that ρ is a Liouville field. We can further introduce an

auxiliary field β, which leads us to the Wakimoto representation [ citations needed ]: WL:

conventions?

S[ρ, γ, γ̄, β, β̄] =
k

2π

∫
d2z

(
∂ρ ∂̄ρ+ β ∂̄γ + β̄ ∂γ̄ − ββ̄ e−2ρ ∂̄γ̄ ∂γ

)
(3.18)

It returns to the original action after we integrate out β. From this action it is clear that

at large radius (large ρ), the last term in the action can be dropped, and the theory is well

approximated by free fields, including a free scalar ρ, a pair of left-moving free fermions

(β, γ), and a pair of right-moving ones (β̄, γ̄).

An alternative representation is given in terms of the ŜL(2,R)k WZW model.

4 Holographic Dualities Beyond AdS3/CFT2

In the previous sections, we have laid down some basic aspects of AdS3/CFT2 dualities in

string theory. Starting from this section, we are going to introduce recent salient devel-

opments on holographic dualities beyond AdS3/CFT2. In particular, we will focus on T T̄

deformation. This section is organized as follows:
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4.1 Top-Down Approach: Deformations of AdS3/CFT2 in string theory

In order to introduce deformations, we here remind the basic triangle among AdS3/CFT2.

 

AdS3 CFT2

WZW

∂λSWS = − 2
k ∫ j(m) ∧ j(m̄)

∂μSℳμ
= − 4∫ J(m) ∧ J(m̄)TsT black strings,


Ramond & NS vacua Entropy

Perturbative spectrum

Figure 1. The holographic correspondence between string theory on AdS3×M7 backgrounds and

two-dimensional CFTs (inner triangle), and its relationship to the conjectured duality between TsT

transformations of AdS3 ×M7 spacetimes, bi-current deformations of the worldsheet action, and

single-trace irrelevant deformations of two-dimensional CFTs (outer triangle). Adapted from [10]

D(x, x̄) =

∫
d2z(∂xJ∂x + 2∂2

xJ)(∂x̄J̄∂x̄ + 2∂2
x̄J̄)Φ1 (4.1)

Aa(x, x̄) =

∫
d2zka(z)(∂x̄J̄∂x̄Φ1 + 2∂2

x̄J̄Φ1) (4.2)

The dual spacetime CFT at large p is argued to be the symmetric product orbifold

Mp/Sp, denoting the seed theory M, the energy-momentum tensor can be written as

T (x) =

p∑
i=1

Ti(x) (4.3)

which can be also written as

T (x) =
1

2k
(∂xJ∂xΦ1 + 2∂2

xJΦ1)J̄(x̄; z̄) (4.4)

The OPEs are

T (x, x̄)D(y, ȳ) ∼ cM
(x− y)4

T̄ (ȳ) + · · · (4.5)
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4.2 T T̄ deformation

In a Lorentzian invariant theory, the stress tensor Tµν is conserved, i.e. ∂µT
µν = 0. One

can define its determinant DetTµν as

OT T̄ := DetTµν

= TxxTx̄x̄ − Txx̄Tx̄x
= Limx→y(Txx(x)Tx̄x̄(y)− Txx̄(x)Tx̄x(y)) + derivatives

(4.6)

which is well-defined, and has

〈n|OT T̄ |〉 = 〈n|T |n〉〈n|T̄ |n〉 − 〈n|Θ|n〉〈n|Θ̄|n〉 (4.7)

The T T̄ deformations can be described by deforming the CFT by an extra term

∂SMµ

∂µ
=

∫
d2xOT T̄ (4.8)

where we have combine the 2d spacetime coordinate (φ, t) into x = φ+ t and x̄ = φ− t.

When putting the deformed CFT on a cylinder, with (x, x̄) ∼ (x+ 2πR, x̄+ 2πR), one

can then evaluate the energy spectra via invisited Burger’s equation:

∂En(R,µ) = En(R,µ)∂E(R, 0) +
1

R
J2
n(R) (4.9)

The spectrum

E(µ) = − R
2µ

[
1−

√
1 +

4µ

R
E(0) +

4µ2

R4
J(0)2

]
, J(µ) = J(0), (4.10)

where E = EL + ER and J = R(EL − ER) denote the energy and angular momentum.

Let us make some comments on the T T̄ deformation: • it is irrelevant, since the

dimension of µ is 2 > 0.

• It is also solvable, which is the main reason why people are interested in studying

them.

• It can also be reformulated as coupling to random geometry, flat JT gravity, (non-)

critical strings.

• The partition function after the deformation is still modular invariant.

• The scattering amplitude can be shown as dressed by a phase factor.

From the histroric viewpoint,
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It was conjectured in [11] that performing the following TsT transformation on the

string theory is holographically equivalent to deforming the seed of the dual symmetric

orbifold,

TsT(Xm,Xm̄;µ̌) ⇐⇒
∂SMµ

∂µ
= −4

∫
J(m) ∧ J(m̄), (4.11)

where TsT(Xm,Xm̄;µ̌) denotes T-duality on Xm, shift Xm̄ → Xm̄ − 2µ̌Xm, and T-duality

on Xm, SMµ is the action of the deformed seed, µ(µ̌) is the dimensionful(less) deformation

parameter, and J(m), J(m̄) are the Noether currents generating translations along Xm, Xm̄.

It is interesting to note that from a purely worldsheet perspective, a TsT transformation

is equivalent to a marginal bi-current deformation of the worldsheet action, the latter of

which can be shown to be equivalent to a gauged (SL(2, R)×U(1))/U(1) WZW model [11].
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