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1 Ward Identity with Hard Thermal Loop

The hard thermal loop (HTL) approximation of the photon self-energy is given by:
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Where m%, = ezg ®. Here we've chosen the Lorentzian signature g ~ (—+++), and Q" ~ (¢°, q),

where ¢ = —iw, q = ||q||, while the normalized K, ~ (1,k), K* ~ (f ,k). We have:
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More specifically, we have Q*1I,o o< (fdz%ﬂ(f‘) 1) 1 = 0, and also Q*II,,0 o [ d? Q(k K, = 0.
Therefore, the self-energy is transverse.

2 Decomposition of II,,

As we know, Q*1I,,, = 0, hence it can be nicely decomposed by various projections related to
Q*"; recall that:

Q QV A A
E;w = 522 = Q/,LQV7 P/u/ =G9u — E/,Ll/u (4)
N = Pr(0,q), = PHg; = —P"gy = PR, Q,N* =0, (5)
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Note that P annihilates both Q" and N*, by linearity it also annihilates both (1,0) and (0, q), i.e

Pplqy =0, Py’ =0, (7)
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The transverse self-energy can then be decomposed as:
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We see that II,,, is entirely determined by 1% and 11#,,. More explicitly, we have!:
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Y0 IT%; is computed explicitly as follows:
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3 HTL in QCD

The gluon self-energy at 1-loop is similar to the QED situation, except that now we should include
the extra degrees of freedom in the summation.

The quark 1-loop correction is structurally identical to the QED fermion 1-loop correction,
but enhanced Ny fold due to the flavor degrees of freedom. Also, Tr (T oT b) = %6‘”’ gives an extra
% factor. In the end, the quark loop contribution is given by the overall factor:

1
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The rest is identical to the QED case.

1 Note that the metric convention here might result in signs that may differ from the textbook.
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The ghost loop is also similar, except now we have a factor of N, instead of %N t, and with a
frequency summation given by:
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We’ve computed a similar Matsubara summation before, while treating the QED fermionic loop; the
method still applies here but with bosonic frequencies. This produces an additional factor of (—%),
relative to the fermionic case?. In the end, we have:

1
m2E — mgghost 5 = _ch 5 (20)

2 Reference: Laine & Vuorinen, Basics of Thermal Field Theory.



	Ward Identity with Hard Thermal Loop
	Decomposition of 
	HTL in QCD

