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1 T-duality of Heterotic Strings1

We use d ≤ 10 to denote the number of noncompact dimensions; the remaining m ≥ d dimensions
are compactified. For heterotic strings, the I ≥ 10 dimensions of the left-moving sector are already
compactified on a lattice Γ16 or Γ8×Γ8. Here we use the label I to index the 16 internal dimensions.

(a) Generally, if we compactify an open string on the xm direction: xm ∼= xm + 2πR with
constant backgrounds Am, then its zero mode spectrum, with winding w = 0, can be obtained from
canonical quantization of the effective point particle action, with an additional gauge action term in
the form of a Wilson line2:

−Wq = −iq
ˆ

dxm Am ∼ −iq
ˆ

dτ AmẊm (1)

By imposing that the canonical momentum to be periodic along xm, we find that:

km =
nm

R
− qAm (2)

To obtain the winding states, we have to reproduce the above action from the world-sheet de-
scription. For heterotic strings with m < 10 ≤ I ≤ 26, this can be achieved by adding the following
term to the usual world-sheet action3:

SA ∝
ˆ

d2σ ϵabAI
µ ∂aX

µ ∂bXI (3)

With proper normalization to match the result in (2).

Canonical quantization then produces4:

km =
nm

R
± wmR

α′ − qIA
I
m −

wnR

2
An

IA
I
m, (4)

kIL =

√
2

α′

(
qI + wmRAI

m

)
, (5)

The “±” signs in km correspond to the left and right-moving sector, respectively. Only the left-moving
sector has an additional 16 dimensional internal torus, therefore kI is labeled with an “L”.

Note that the charge qI now takes value on the Γ16 or Γ8 × Γ8 lattice, and:

l ◦ l′ = α′

2

(
kIL k′L,I + kmL k′L,m − kmR k′R,m

)
= qIq′I + 2nw (6)

We can then see that the new “extended” lattice indeed satisfies the even and self-dual conditions,
which follows from the even and self-dual properties of Γ16 or Γ8 × Γ8.

1 I would like to thank Lucy Smith for help with this problem.
2 Reference: Polchinski, Chapter 8.
3 Reference: Blumenhagen et al., Basic Concepts of String Theory.
4 Reference: Polchinski, Chapter 11.
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(b) With m = 9 and Gdd = 1, we have:

Wq = exp
(
−iqIθI

)
, AI

9 = − θI

2πR
(7)

Note that Wq captures the phase change of the paths that wind around x9; the extra phase from
a non-trivial Wilson line might affect the boundary condition of some states while leaving others
intact, thus breaking the original gauge symmetry. Our discussions here closely follow Polchinski,
Chapter 11.

For the SO(32) theory with:
RAI

9 = diag
(
( 12 )

8, 08
)

(8)
Adjoint states are labeled by a pair of indices valued in 1, · · · , 32; those with one index from 1 ≤
A ≤ 16 and one from 17 ≤ A ≤ 32 are anti-periodic due to the additional phase eiπ = −1 from the
Wilson line, so the gauge symmetry is reduced to SO(16)× SO(16).

Similarly, for the E8 × E8 theory with:

R′AI
9 = diag

(
1, 07, 1, 07

)
(9)

Note that Γ8, the root lattice of E8, is basically the root lattice union an additional spinor weight
lattice of SO(16). With the above Wilson line, the integer-charged states from the SO(16) root
lattice in each E8 remain periodic, while the half-integer charged states from the SO(16) spinor
lattices become anti-periodic, due to the additional phase ei

1
2 ·2π = −1. Again the gauge symmetry

is broken down to SO(16) × SO(16).

In summary, with the above Wilson line, the SO(32) and E8 × E8 theory shares an unbroken
gauge of SO(16) × SO(16). Consider the spectrum of the SO(16) × SO(16) neutral states, i.e. those
with internal momentum:

kIL =

√
2

α′

(
qI + wRAI

9

)
= 0 (10)

For the SO(32) theory, since qI ∈ Γ16 while RAI
9 = diag

(
( 12 )

8, 08
)
, we must have w = 2m for this to

hold. The same goes for the E8 × E8 theory; therefore, we have:

kL,R =
ñ

R
± 2mR

α′ , k′L,R =
ñ′

R′ ±
2m′R′

α′ , (11)

ñ = n+ 2m, ñ′ = n′ + 2m′ (12)

(c) If the two theories are related by T-duality, then we should expect:

(kL, kR)←→ (k′L,−k′R), (13)

Under suitable mapping of parameters. Indeed, it is straightforward to verify that (ñ,m)↔ (m′, ñ′)

realizes this, along with RR′ = α′/2. The above arguments can then be generalized to higher levels,
by acting on fermionized left-moving fields λA and carefully organizing representations. We see that
the two heterotic string theories are equivalent under T-duality.

2 String Junction5

For a string junction to be mechanically stable, the tension force exerted on the junction must
cancel each other; this is a Newtonian mechanics problem, but with (p, q)-string tension given by the

5 Reference: arXiv:0812.4408.

https://arxiv.org/abs/0812.4408
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BPS bound:
τ(p,q) =

√
p2 + q2/g2

2πα′ (14)

Stability of the system implies that the BPS bound should be saturated.

From Newtonian mechanics, we know that three forces cannot cancel each other unless they are
co-planar. Therefore, a 3-string junction must be co-planar in order to be stable. Suppose they lie
in the (X1, X2) plane, then the tension exerted on the junction can expressed as:

T⃗i = τ(pi,qi) (cos θi, sin θi), i = 1, 2, 3, (15)∑
i T⃗i = 0 gives two equations, and we have two independent unknowns (the angle between two pairs

of strings); therefore if a solution exists, it should be unique up to rotations and reflections.

In fact, a solution can be found by simple observations:

cos θi =
pi√

p2 + q2/g2
, sin θi =

qi/g√
p2 + q2/g2

, (16)

It satisfies
∑

i T⃗i = 0 since that total (p, q) vanishes at each junction.

To find the remaining supersymmetries of this system, we start from the original supersymmetries
of a (p, q) string (which saturates the BPS bound) extended along the X̂ = (cos θ, sin θ) direction:

1

2Lτ(p,q)

{[
Qα

Q̃α

]
,
[
Q†

β Q̃†
β

]}
= δαβ

[
1 0

0 1

]
+ (Γ0Γθ)αβ

[
cos θ sin θ

sin θ − cos θ

]
, (17)

Γθ = X̂ · Γ⃗ = Γ1 cos θ + Γ2 sin θ (18)

We see that the algebra depends on θ, i.e. it is different for strings in different directions. However, if
we can find a (maximal) subalgebra that is independent of θ, then we would have found the remaining
supersymmetries of the full system6.

We begin with diagonalizing the matrix on the RHS with:

U( θ2 ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, (19)

1

2Lτ(p,q)

{
UT

[
Qα

Q̃α

]
,
[
Q†

β Q̃†
β

]
U

}
=

[
(1+ Γ0Γθ)αβ 0

0 (1− Γ0Γθ)αβ

]
, (20)

Note that (1+ Γ0Γθ)(1− Γ0Γθ) = 0 and (1+ Γ0Γθ) + (1− Γ0Γθ) = 21, i.e. they are orthogonal to
each other; acting (1± Γ0Γθ) on both sides, we find the following combinations, which gives the 16
SUSYs of a (p, q) string:

(1− Γ0Γθ)
(

cos θ
2 Q+ sin θ

2 Q̃
)
α
= 0 = (1+ Γ0Γθ)

(
− sin θ

2 Q+ cos θ
2 Q̃
)
β

(21)

6 The τ(p,q) factor can be absorbed by rescaling generators, hence does not matter in our discussions.
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For further simplification, we can isolate the θ dependence in Γθ by working in a specific repre-
sentation of the Clifford algebra, e.g. the Dirac representation given by Polchinski. Then α is given
by 10 D spinor components: α = (s0, s1, s2, s3, s4), si = ±, with additional chirality constraints from
both Q and Q̃:

∏
i si = +. In the end, we have 16 independent components as expected.

Details of the expansion are given in arXiv:0812.4408. When the dust settles, we find that the
16 SUSYs in (21) is given by:

sin θ
2

(
cos θ

2 Q+ sin θ
2 Q̃
)
(++s)

+ cos θ
2

(
cos θ

2 Q+ sin θ
2 Q̃
)
(−−s)

, (22a)

sin θ
2

(
cos θ

2 Q+ sin θ
2 Q̃
)
(+−s)

− cos θ
2

(
cos θ

2 Q+ sin θ
2 Q̃
)
(−+s)

, (22b)

cos θ
2

(
− sin θ

2 Q+ cos θ
2 Q̃
)
(++s)

− sin θ
2

(
− sin θ

2 Q+ cos θ
2 Q̃
)
(−−s)

, (22c)

cos θ
2

(
− sin θ

2 Q+ cos θ
2 Q̃
)
(+−s)

+ sin θ
2

(
− sin θ

2 Q+ cos θ
2 Q̃
)
(−+s)

, (22d)

s = (s2s3s4),
∏
i

si = + (23)

By trial and error, we can find the 8 linear combinations that are independent of θ; they are:

(a) + (c) =⇒ Q̃(++s) +Q(−−s), (24)
(b) + (d) =⇒ Q̃(+−s) −Q(−+s), (25)

Therefore, the string junction is 8
32 = 1

4 BPS.

3 Two and Three-Point Functions in AdS/CFT

Consider a scalar field ϕ(x, z) in Poincaré AdS5 (with radius R = 1) satisfying:

(
∇2 −m2

)
ϕ(x, z) = 0, ϕ(x, z)→

{
zδϕ0(x) , z → 0,

regular, z →∞,
δ = 2−

√
m2 + 4 (26)

It can be constructed via the boundary-to-bulk propagator K∆:

ϕ(x, z) =

ˆ
d4x′ K∆(x, z;x

′)ϕ(x′), (27)

K∆(x, z;x
′) =

(∆− 1)(∆− 2)

π2

(
z

z2 + ‖x− x′‖2

)∆
, ∆ = 2 +

√
m2 + 4 (28)

(a) To verify this, we first check that the boundary conditions are indeed satisfied by K∆; note
that ∆ ≥ 2 > 0, and we have:

z → 0, l 6= 0,

(
z

z2 + l2

)∆
→ 0, (29)

i.e. the only contribution comes from the l→ 0 case, where we have:

l = ‖x− x′‖ → 0,

ˆ
d4x′ K∆(x, z;x

′) =
(∆− 1)(∆− 2)

π2

ˆ ∞

0

2π2l3 dl
(

z

z2 + l2

)∆
=

(∆− 1)(∆− 2)

π2
· 2π2

2 (∆− 1)(∆− 2)
z4−∆

= zδ

(30)

https://arxiv.org/abs/0812.4408
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Therefore, we have:

z → 0, K∆(x, z;x
′)→ zδδ4(x− x′), ϕ(x, z)→ zδϕ0(x), (31)

The other boundary condition is convenient to check; we have:

z →∞, K∆(x, z;x
′)∝∼ z−∆ → 0, ϕ(x, z) regular. (32)

Now we need only check that K∆ satisfies the equation of motion; in Poincaré AdS5 we have:

∇2 = z2
(
∂2
z −

3

z
∂z + ∂2

x

)
(33)

With the help of MathematicaTM, it is straightforward to check that
(
∇2 −m2

) (
z

z2+l2

)∆
= 0,

therefore
(
∇2 −m2

)
ϕ(x, z) = 0.

K L

The AdS/CFT dictionary is given by:〈
e
´

d4xCO ϕ0(x)O(x)
〉

CFT
= e−S[ϕ0] (34)

Where S[ϕ0] the bulk effective action evaluated on the solution to the equation of motion:

S[ϕ0] =

ˆ
d4xdz

√
−G

{
1

2
(∂µϕ)

2
+

1

2
m2ϕ2 +

1

3
gϕ3 + · · ·

}
(35)

(b) The CFT 2-point function 〈O(x)O(y)〉 can be computed with the above dictionary, using
the usual effective formalism, but with the bulk action instead of the boundary action:

〈O(x)O(y)〉 = 1

C2
O

δ2

δϕ0(x) δϕ0(y)
e−S[ϕ0]

∣∣∣∣
ϕ0=0

(36)

For 2-point function, we only need terms ∼ O
(
ϕ2
)
; note that:

δϕ(x, z)

δϕ0(x′)
= K∆(x, z;x

′), (37)

δS [ϕ0] ∼
ˆ

d4xdz
√
−G

(
−∇2 +m2

)
ϕ δϕ+

ˆ
z→0

d4x
√
−G∂zϕ δϕ

= 0−
ˆ
z→0

d4x z−5z2∂zϕ δϕ = −
ˆ
z→0

d4x z−3∂zϕ δϕ ,

(38)

∴ 〈O(x)O(y)〉 = +
1

C2
O

δ

δϕ0(x)
e−S[ϕ0]

ˆ
z→0

d4x′ z−3∂zϕ(x
′, z)K∆(x

′, z; y)

∣∣∣∣
ϕ0=0

=
1

C2
O

ˆ
z→0

d4x′ z−3∂zK∆(x
′, z;x)K∆(x

′, z; y)

=
1

C2
O

ˆ
z→0

d4x′ z−3∂zK∆(x
′, z;x) zδδ4(x′ − y)

=
zδ−3

C2
O

∂zK∆(x, z; y)

∼ zδ−3

C2
O

(∆− 1)(∆− 2)

π2

∆z∆−1

‖x− y‖2∆

=
1

C2
O

∆(∆− 1)(∆− 2)

π2

1

‖x− y‖2∆

(39)
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Therefore, if we want 〈O(x)O(y)〉 = 1
∥x−y∥2∆ , then we have7:

CO =
1

π

√
∆(∆− 1)(∆− 2) (40)

Here z → 0 is a cutoff parameter.

(c) Similarly, we can use the dictionary to compute 3-point functions; we have8:

〈O(x1)O(x2)O(x3)〉 =
1

C3
O

(
−g

3

)ˆ
d4xdz

√
−GK∆(x, z;x1)K∆(x, z;x2)K∆(x, z;x3) (41)

This is a difficult integral; as is suggested by arXiv:hep-th/9804058, we can use an important
symmetry of AdS/CFT — the inversion x⃗ 7→ x⃗

x2 , to complete the integration.

By conformal symmetry, we know that the 3-point function is of the form:

〈O(x1)O(x2)O(x3)〉 = A(x1, x2, x3) =
COOO

|x12|∆|x23|∆|x31|∆
, xij = xi − xj (42)

First set x3 = 0, then perform inversion on all other points:

xi =
x′
i

x′2
i

, (x, z) =
(x′, z′)

r′2
, r2 = x2 + z2, r2r′2 = 1 = x2

ix
′2
i , (43)

d4xdz
z5

=
d4x′ dz′

z′5
, (44)

z

z2 + ‖x− xi‖2
=

z

r2 + x2
i − 2x · xi

=
z′/r′2

1/r′2 + 1/x′2
i − 2x′ · x′

i/(r
′2x′2

i )

=
z′

r′2 + x′2
i − 2x′ · x′

i

x′2
i =

z′

z′2 + ‖x′ − x′
i‖

2 x′2
i ,

(45)

K∆(x, z;xi) = K∆(x
′, z′;x′

i) |x′
i|
2∆

=
1

|xi|2∆
K∆(x

′, z′;x′
i), (46)

With these in mind, we find that:

A(x1, x2, 0) = −
g

3C3
O

1

|x1|2∆
1

|x2|2∆
(∆− 1)(∆− 2)

π2

ˆ d4x′ dz′
z′5

K∆(x
′, z′;x′

1)K∆(x
′, z′;x′

2) z
′∆ (47)

The integral can then be completed using Feynman parameters; in the end we obtain:

A(x1, x2, 0) ∝
1

|x1|2∆
1

|x2|2∆
1

|x′
1 − x′

2|
2∆

=
1

|x1|∆|x2|∆|x1 − x2|∆
, (48)

COOO = − g

3C3
O

1

2π4

(
Γ(∆2 )

Γ(∆− 2)

)3
Γ

(
3∆− 4

2

)
(49)

7 Reference: arXiv:hep-th/9804058. Again I would like to thank Lucy Smith for helpful hints.
8 Reference: arXiv:hep-th/9905111, and arXiv:hep-th/9804058.
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