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1 Type 0 Superstrings

A closed superstring theory consists of sectors labeled by the boundary conditions (−1)α of (ψ, ψ̃)
along with suitable GSO projections (−1)F = ±1. Here we follow the discussions of Polchinski, with
R : α = 1 and NS : α = 0.

There are also some consistency conditions: by modular invariance, there must be at least one
left-moving R sector and at least one right-moving R sector; on the other hand, the OPE must close,
and since R × R = NS there must be some corresponding NS sector for each R sector.

If we include only the (NS, NS) and the (R, R) sectors, then both must exist due to the above
conditions. In fact, closure of OPE implies that the (NS+, NS+) sector must exist. In addition, NS−
sector must be paired with another NS− sector due to the level matching condition of the closed
string, i.e. it is possible (but not required) to have a (NS−, NS−) sector.

All possibilities can then be generated by enumerating all possible (R, R) sectors (there are
2 × 2 = 4 of them), while applying an extra consistency check that all pairs of vertex operators
O1, O2 are mutually local, i.e.

exp iπ
(
F1α2 − F2α1 − F̃1α̃2 + F̃2α̃1

)
= 1 (1)

If O1 ∈ ( NS+, NS+), then we have α1 = α̃1 = 0 = F1 = F̃1, hence the above factor is always trivial;
for O1 ∈ (R, R), however, α1 = α̃1 = 1, which yields a non-trivial constraint for the second operator:
F2 − F̃2 = F1α2 − F̃1α̃2 = α2

(
F1 − F̃1

)
(mod 2), assuming α2 = α̃2. With α2 = 0 this gives F2 = F̃2,

and with α2 = 1 this gives F2 − F̃2 = F1 − F̃1; this means that all (R, R) sectors have the same sign
difference between F and F̃ . The possible solutions can then be narrowed down to:

0A : (NS+, NS+), (NS−, NS−), (R+, R−), (R−, R+), (2)
0B : (NS+, NS+), (NS−, NS−), (R+, R+), (R−, R−), (3)

And additionally, (NS+, NS+) with any single one of the 4 possible (R, R) sectors. (4)

If there are two (R, R) sectors, then there must be an accompanying (NS−, NS−) sector due
to the closure of OPE. It is straightforward to check that these possibilities are all valid under the
above constraints: (0) level matching of closed strings, (1) mutual locality, (2) closure of OPE, and
(3) (apparent) modular invariance (not sufficient yet, to be checked below).

(a) The torus partition function of the theory breaks up into a product of independent sums over
the bosonic X and fermionic (ψ, ψ̃) oscillators. The bosonic part is identical to the bosonic string
situation, therefore modular invariant; to check the total partition function for modular invariance,
we will look at the fermionic contributions Z = Zψ,ψ̃ explicitly.

Similar to the Type II case, the building block of Z is given by:

Zαβ = Trα
[
(−1)βF qH

]
, q = e2πiτ (5)

Where α, β labels the periodicity in the spatial and temporal directions (σ1, σ2); note that for
fermionic fields, anti-periodicity in the time direction gives the simple trace, while the periodic
path integral gives the trace weighted by (−1)F , as is explained in Polchinski, Appendix A.
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In 10 D, µ = 1, · · · , 10, in total there are N = 10−2 = 4×2 = 8 real, transverse spinor components
in (ψµ, ψ̃µ); pairing them into complex chiral spinors like ψ1 ± ψ2, each one of them contributes a
factor of Zα0 in the total partition function.

Note that for type II theories, the boundary conditions and GSO projections (α, F ) for the left
and right movers are “decoupled”; any possible (α, F ) can be paired with any possible (α̃, F̃ ), hence
the left and right contributions can be calculated separately. For type 0 theories, however, the left
and right (α, F )’s are coupled, hence we have to calculate their contributions together. With the
above considerations, we have:

Tr(NS,NS)

[
1 + (−1)F−F̃

2
qH

]
=

1

2

{
Tr(NS,NS) q

H + Tr(NS,NS)

[
(−1)F−F̃ qH

]}
=

1

2

{∣∣∣(Z0
0 )
N/2

∣∣∣2 + ∣∣∣(Z0
1 )
N/2

∣∣∣2}
=

1

2

{∣∣Z0
0

∣∣N +
∣∣Z0

1

∣∣N}
,

Tr(R,R)

[
1∓ (−1)F−F̃

2
qH

]
=

1

2

{
Tr(R,R) q

H ∓ Tr(R,R)

[
(−1)F−F̃ qH

]}
=

1

2

{∣∣Z1
0

∣∣N ∓
∣∣Z1

1

∣∣N}
,

(6)

Z0A|B =
1

2

{∣∣Z0
0

∣∣N +
∣∣Z0

1

∣∣N +
∣∣Z1

0

∣∣N ∓
∣∣Z1

1

∣∣N}
(7)

Similarly, for the situation in (4) with no (NS−, NS−) sector, depending on the GSO projections
(F, F̃ ) in the single (R, R) sector, we have:

Z′ =

∣∣∣∣12 (
(Z0

0 )
N/2 + (Z0

1 )
N/2

)∣∣∣∣2 +
1

2

(
(Z1

0 )
N/2 + (−1)F (Z1

1 )
N/2

)
·
1

2

(
(Z1

0 )
N/2 + (−1)F̃ (Z1

1 )
N/2

)∗

=
1

2

{
Z0A|B + Re (Z0

0Z
0
1 )

N/2 + (−1)F̃ (Re | i Im) (Z1
0Z

1
1 )

N/2
} (8)

To check for modular invariance, note that1:

Zαβ (τ) = Zβ−α (− 1
τ ) = Zαα+β−1 (τ + 1) · exp

(
−iπ 3α2 − 1

12

)
(9)

We see that Z0A|B is indeed modular invariant, while Z ′ = 1
2Z

0A|B + (· · ·) is not modular invariant,
due to the extra “mixing” terms in (· · · ).

(b) Consider the ground states in the type 0 theories; the NS ground state is tachyonic:

m2 = −k2 = − 1

2α′ (10)

With (−1)F = −1, while the level 1 states are massless and form a vector representation 8v of the
massless little group SO(8). After GSO projections, the NS ground state becomes the (NS−) ground
state, while the level 1 massless states become the (NS+) ground states.

1 See Polchinski, Chapter 10. Note that the factor exp
(
−iπ 3α2−1

12

)
comes from a global gravitational anomaly, but

does not matter in Z0A|B since we are taking absolute values.
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On the other hand, the R ground state is massless. In general, 10 D Dirac spinors form a repre-
sentation 32Dirac of SO(9, 1); however, in the massless case it can be further reduced into two Weyl
spinors 16 + 16′, labeled by chirality Γ11 = (−1)F . They are spinor representations of SO(8). The
on-shell condition (i.e. the Dirac equation) further reduces the representation into 8 and 8′, one for
(R+) and one for (R−).

The closed string spectrum is then obtained by tensor product of the left and right moving part.
For type 0 theories, we see that there is a tachyonic state: the (NS−, NS−) ground state is a 1×1 = 1
scalar tachyon; with a momentum rescale k 7→ k/2, the mass is now given by m2 = −2/α′. The
remaining massless states are:

(NS+, NS+): 8v × 8v = [0] + [2] + (2) (11)
(R±, R±) : 8(′) × 8(′) = [0] + [2] + [4]± (12)
(R+, R−) : 8 × 8′ = [1] + [3] (13)

Where we’ve listed the irreducible decompositions of the various 8 × 8 tensor product, following the
notations of Polchinski.

2 Kaluza–Klein Mechanism

The D = d+ 1 dimensional metric can be parameterized as follows:

ds2 = GDMN dxM dxN = Gµν dxµ dxν + e2σ
(
dxd +Aµ dxµ

)2
, (14)

GDµν = Gµν + e2σAµAν , xd ∼= xd + 2πR (15)

Where µ = 0, 1, · · · , (d − 1) labels the noncompact directions, and the xd direction is compactified.
Gµν , σ and Aµ should depend only on the noncompact coordinates xµ, Aµ = GµνAν .

GDMN can be inverted by solving δLN = GLMD GDMN , or in components:

0 = GµνD e2σAν +GµdD e2σ =⇒ GµdD = −GµνD Aν , (16)

1 = GµdD e2σAµ +GddD e2σ =⇒ GddD = e−2σ −GµdD Aµ = e−2σ +GµνD AµAν , (17)

δµρ = GµνGνρ = GµνD GDνρ +GµdD e2σAρ, (18)

Contract the last equation with Aρ, and we can solve for GµdD and then all other components.
Alternatively, we can use the inversion formula for a block matrix2; either way, we obtain a nice and
clean result:

GµdD = −Aµ, GddD = e−2σ +A2, GµνD = Gµν , (19)

There is also a formula3 for the determinant GD; we have:

G−1
D = G−1

d

(
e−2σ +A2 −A2

)
= G−1

d e−2σ, GD = Gd e
2σ (20)

(a) The Christoffel symbols can hence be calculated explicitly, using the GDMN components; the
Ricci scalar can then be computed with brute force4; in the end, we have:

RD = Rd − 2e−σ∇2eσ − 1

4
e2σFµνF

µν , (21)

2 See e.g. Wikipedia: Block matrix # Block matrix inversion.
3 See e.g. Wikipedia: Determinant # Block matrices.
4 Reference: www.weylmann.com/kaluza.pdf, and Polchinski, Chapter 8.

https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
https://en.wikipedia.org/wiki/Determinant#Block_matrices
http://www.weylmann.com/kaluza.pdf
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S =
1

2κ20

ˆ
dDx

√
−GD RD

=
1

2κ20
· 2πR

ˆ
ddx

√
−Gd eσRD

∼ πR

κ20

ˆ
ddx

√
−Gd eσ

(
Rd −

1

4
e2σFµνF

µν

) (22)

Here we’ve dropped the ∇2eσ term in the Einstein–Hilbert action, for it is a total derivative:

∇2eσ =
1√
−Gd

∂µ

(√
−GdGµνd ∂νe

σ
)

(23)

However, if there is a D-dimensional dilaton Φ coupled to gravity: LD ∼ e−2ΦRD, then the e−2Φ∇2eσ

term cannot be dropped, since it will contribute a Φ–σ coupling term. Here we are setting Φ ≡ 0.

The eσ factor before Rd can be absorbed by rescaling; first we eliminate the zero mode of σ by
rescaling the coupling κ0 → κ:

σ = σ0 + σ′, 〈σ〉 = σ0, 〈σ′〉 = 0, (24)
1

κ20
eσ =

1

κ2
eσ

′
, κ = κ0 e

−σ0/2, (25)

Then we work on the remaining σ′ = σ − σ0. Note that:

G′
µν = e2ω(x)Gµν , G′ = e2ω·dG, G′µν = e−2ωGµν , (26)

R′
d = e−2ω

(
Rd − 2 (d− 1)∇2ω − (d− 2)(d− 1) ∂µω ∂

µω
)
, (27)

√
−Geσ

′
Rd ∼

√
−G′R′

d ∼
√
−Ge(d−2)ωRd, ω =

σ′

d− 2
, (28)

Before we proceed, let’s first work out the Weyl transformation of the Laplacian:

∇′2σ′ =
1√
−G′

∂µ

(√
−G′G′µν∂νσ

′
)

=
1√
−G

e−ωd ∂µ

(√
−Ge+ωde−2ω Gµν∂νσ

′
)

= e−ωd (∂µe
σ′
)Gµν∂νσ

′ + e−2ω∇2σ′

= G′µν∂µσ
′∂νσ

′ + e−2ω∇2σ′

(29)

The transformed Ricci scalar can then be rewritten as:

R′
d = e−2ωRd − 2

d− 1

d− 2
e−2ω∇2σ′ − d− 1

d− 2
∂µσ

′ ∂′µσ′

= e−2ωRd − 2
d− 1

d− 2

(
∇′2σ′ − ∂µσ

′ ∂′µσ′
)
− d− 1

d− 2
∂µσ

′ ∂′µσ′

= e−2ωRd − 2
d− 1

d− 2
∇′2σ′ +

d− 1

d− 2
∂µσ

′ ∂′µσ′

(30)

Again, the ∇′2σ′ term is a total derivative and can be dropped in the action. In the end, we get:

S ∼ πR

κ2

ˆ
ddx

√
−G′

d

(
R′
d −

d− 1

d− 2
∂µσ

′ ∂′µσ′ − 1

4
e2(σ+ω)FµνF

′µν
)

(31)
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This is the effective d-dimensional theory that we have been looking for, with a gauge field Fµν and
a massless dilaton σ′. Roughly speaking, the dilaton σ′ can be treated as a Goldstone boson due to
the breaking of scale invariance by compactification5.

Following the convention of Polchinski, we define Aµ = RÃµ, ρ = Reσ, ρ0 = 〈ρ〉 = Reσ0 , then
the gravitational and gauge couplings are given by:

1

2κ2d
=
πR

κ2
, − 1

4g2d
= −1

4
e2⟨σ+ω⟩R2 · πR

κ2
= −1

4
e2σ0R2 · 1

2κ2d
, (32)

∴ κ2d =
κ2

2πR
=

κ20
2πρ0

, g2d =
2κ2d
ρ20

=
κ20
πρ30

, ρ0 = Reσ0 (33)

(b) The above mechanism provides a natural theory of gravity and electromagnetism in d = 4.
Note that the gravitational and gauge couplings are related with the radius of the compact dimension:

g2d
κ2d

=
2

ρ20
(34)

In reality gravity is much weaker than electromagnetism, which means that ρ0 → 0, or R → 0 if we
gauge-fix σ0 ≡ 0. In other words, the radius is constrained by the ratio of the couplings:

R ∼
√
2
κd
gd

(35)

3 Fiberwise T-Duality and the Dilaton

(a) For a bosonic string moving in a general background of massless fields in D = d + 1 = 26,
its worldsheet action is given by:

S =
1

4πα′

ˆ
d2σ

√
g
{(
gabGMN (X) + iϵabBMN (X)

)
∂aX

M∂bX
N + α′RΦ(X)

}
(36)

Where Φ is the worldsheet Ricci scalar. The Xd ≡ X25 direction is to be compactified, and the
background fields GMN , BMN and Φ depends only on Xµ, µ = 0, 1, · · · , (d− 1) = 24.

GMN can be further split into Gµν , Gµd and Gdd with d = 25, in a way similar to (14), but here
we are using a simpler convention, with GDµν = Gµν instead of (15). Similar goes for BMN , with
Bµν , Bµd, and Bdd = 0, due to anti-symmetry.

(b) After replacing ∂aX
d 7→ ∂aX

d + Aa where Aa is an auxiliary abelian gauge field on the
worldsheet, the Xd related parts in the Lagrangian become:

Ld[X
d, Aa] =

√
g

4πα′

{
2
(
gabGµd + iϵabBµd

)
(∂aX

d +Aa) ∂bX
µ + gabGdd (∂aX

d +Aa) (∂bX
d +Ab)

}
(37)

Consider a translation Xd 7→ Xd + λ, where λ depends on Xµ = Xµ(σ) and hence depends on
the worldsheet coordinates σ; it is clear that:

∂a
(
Xd + λ

)
+ (Aa − ∂aλ) = ∂aX

d +Aa, Ld
[(
Xd + λ

)
, (Aa − ∂aλ)

]
= Ld

[
Xd, Aa

]
(38)

i.e. Xd translation is equivalent to a local gauge transformation Aa 7→ Aa − ∂aλ.

5 For a more careful discussion, see Polchinski. See also physics.stackexchange.com/q/138537.

https://physics.stackexchange.com/q/138537
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In fact, we would like Aa to be “pure gauge”, capturing only the Xd translational symmetry and
nothing more; this can be achieved by adding yet another auxiliary field ϕ(σ) and an extra term:

Ld 7−→ Ld + iϵabFab ϕ, Fab = ∂aAb − ∂bAa,

ˆ
Dϕ e−iϵ

abFab ϕ ∼ δ
[
ϵabFab

]
(39)

Which forces F12 ≡ 0 in the remaining path integral. Note that the only non-zero independent
component of Fab in 2D is F12, therefore F12 ≡ 0 implies that Fab ≡ 0, or F = dA = 0. On the
plane, this implies that A = dλ, i.e. it is indeed pure gauge6.

We can then proceed to integrate out Aa. Since A = dλ, we can gauge fix A ≡ 0, and the action
reduces to the original one:

S′[X,ϕ = 0, Aa = 0] = S[X] (40)

Following the Faddeev–Popov procedure, we find that the path integral also reduces to the original
one, up to some additional gauge volume determinant ∆FP , which is independent of X. This implies
that the theory for the fields (X,ϕ,Aa) is, indeed, equivalent to that of the original string theory
which has only the X fields.

(c) Following our discussions in (b), we see that:

∂aX
d +Aa = 0 +Aa − ∂aλ, λ = −∂aXd, (41)

Before completing the path integral, we perform a gauge transformation Aa 7→ Aa − ∂aλ, with
λ = −Xd. Assuming that there is no anomaly, we can ignore the functional Jacobian of the trans-
formation, and the path integral shall be gauge invariant; in this case, the ∂aXd term is canceled
precisely by the gauge transformation, which is equivalent to setting Xd = 0 in the action:

S[Xµ, ϕ, A] = S′[Xµ, Xd = 0, ϕ, A
]

(42)

Furthermore, the Aa related parts in the Lagrangian is now nice and quadratic:

LA =

√
g

4πα′

{
2
(
gabGµd + iϵabBµd

)
Aa ∂bX

µ + gabGddAaAb + iϵabFab ϕ
}

=

√
g

4πα′

{
2
(
gabGµd − iϵabBµd

)
∂aX

µAb + gabGddAaAb + 2iϵabϕ∂aAb

}
∼ 1

4πα′

{
2
(
δabGµd − iϵabBµd

)
∂aX

µAb + δabGddAaAb − 2iϵab ∂aϕAb

}
=

1

4πα′

{
2
((
δabGµd − iϵabBµd

)
∂aX

µ − iϵab ∂aϕ
)
Ab + δabGddAaAb

}
(43)

Here we’ve fixed the conformal gauge gab = δab and integrated by parts, so that ϕ∂aAb 7→ −∂aϕAb.

It is convenient to define7:

Jb =
1

Gdd

((
δabGµd − iϵabBµd

)
∂aX

µ − iϵab ∂aϕ
)

(44)

6 However, if there are punctures on the worldsheet, then there is non-trivial cohomology, and A need not be dλ.
Instead, the gauge field can have non-trivial holonomy around the cycles of the worldsheet. One can show that
these holonomies are gauge trivial if ϕ has periodicity 2π. In this case, the partition function is again equivalent to
the original one. Reference: Tong, String Theory; see also arXiv:0812.4408.

7 Reference: Blumenhagen et al, Basic Concepts of String Theory, Chapter 14.

https://arxiv.org/abs/0812.4408
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The path integral over Aa can then be completed as a Gaussian integral. Note that this time we
integrate out Aa first, leaving ϕ in place; therefore we do not impose any gauge fixing. We have:

LA =
Gdd
4πα′

{
2JbAb + δabAaAb

}
=

Gdd
4πα′

{
(A+ J)2 − δabJaJb

}
, (45)

S =

ˆ
d2σ

(
LA + L0

)
,

ˆ
DAa e

−S ∼ det
[
Gdd

(
Xµ(σ)

)
2πα′

]− 1
2

e−S̃ , (46)

S̃ =

ˆ
d2σ

(
L0 −

Gdd
4πα′ J

aJa

)
, (47)

If we identify Xd ∼= Xd + 2π, then the radius of the Xd circle is given by R(Xµ) =
√
Gdd.

When R2 � α′ or R �
√
α′, the above path integral approaches the classical limit, and its main

contribution comes from the classical saddle Aa = −Ja, which is included in the e−S̃ factor. The
functional determinant is sub-leading and can be ignored.

Expand the action S̃ in terms of (Xµ, ϕ), we find that:

S̃ =
1

4πα′

ˆ
d2σ

{(
δabG̃MN + iϵabB̃MN

)
∂aX̃

M∂bX̃
N
}
, X̃ = (X̃µ, X̃d) = (Xµ, ϕ), (48)

G̃dd =
1

Gdd
, G̃µd =

1

Gdd
Bµd, G̃µν = Gµν −

1

Gdd

(
GµdGνd −BµdBνd

)
, (49)

B̃µd =
1

Gdd
Gµd, B̃µν = Bµν −

1

Gdd

(
GµdBνd −BµdGνd

)
, (50)

i.e. we’ve found the T-dual theory with R̃ ∝ 1
R . Rescale ϕ 7→ ϕ/

√
α′ and Gdd 7→ α′Gdd, we recover

the usual result: R̃ = α′

R .

(d) Now we return to the determinant; roughly speaking, we have:

det
[
Gdd

(
Xµ(σ)

)
2πα′

]− 1
2

= exp
(
−1

2
ln det [· · ·]

)
∼ exp

(
−1

2
tr lnGdd

α′

)
(51)

Which appears to add a term ∼ − 1
2 lnGdd in the Lagrangian.

However, the “det” and “tr” in the above equation are divergent and ill-defined, and would
only make sense after some careful regularization8, which was introduced by Buscher [1] and nicely
reviewed by Alvarez et al [2]. The regularized determinant along with the Jacobian adds the following
contribution in the Lagrangian:

−α′R · 1
2

ln Gdd
α′ (52)

Which is equivalent to a dilaton shift:

Φ̃ = Φ− 1

2
ln Gdd

α′ (53)

In the limit of constant size R =
√
Gdd, note that the string coupling gs ∼ eΦ0 , and we recover

the usual result: g̃s = gs
√
α′/R.

8 I would like to thank 谷夏 for hints about this problem.
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4 Only One Coupling Constant in String Theory9

(a) Consider the open string one-loop diagram, which is topologically a cylinder. To represent
such geometry on the place, we start from the “rectangular” torus:

w ∼= w + 2π ∼= w + 2πτ, τ = it (54)

And identify under an involution, i.e. a reflection through the imaginary axis:

w′ = −w̄, =⇒ 0 ≤ Rew ≤ π (55)

The amplitude is similar to the torus amplitude; first, with a fixed t = −iτ , we have:〈∏
i

:eiki·Xi :

〉
t

= iC (2π)d δd(
∑
i ki) exp

−
∑
i<j

ki · kj G′(wi, wj)−
1

2

∑
i

k2iG
′(wi, wi)

 (56)

But with a different propagator G′, which can be obtained via the method of images; this leads to a
doubling of the exponents compared to the torus amplitude:

G′(w,w′) = G′
T 2(w,w′) +G′

T 2(w,−w̄′), (57)〈∏
i

:eiki·Xi :

〉
t

= iC (2π)d δd(
∑
i ki)

∏
i<j

|Wij(t)|2×α
′ki·kj (58)

Here Wij(t) is the “corrected” distance on T 2; as w → w′ we have Wij ∼ wij = wi − wj .

On the other hand, the vacuum amplitude is given by:

Z = iVd

ˆ ∞

0

dt
2t

(
8π2α′t

)−d/2
η(it)−(d−2) (59)

The bc ghost contributions is included in the |η(it)|2 =
(
η(it)

)2 factor; note that for t > 0, η(it) > 0.
Combining this and

〈∏
i :e

iki·Xi :
〉
t
, we obtain the final n-tachyon amplitude:

A = igno (2π)
d δd(

∑
i ki)

ˆ ∞

0

dt
2t

(
8π2α′t

)−d/2
η(it)−(d−2)

∏
k

ˆ
∂M

dwk
∏
i<j

|Wij(t)|2×α
′ki·kj (60)

Here ∂M is the two ends of the cylinder.

As is suggested in arXiv:0812.4408, it is convenient to introduce the following parametrization
for the operator insertions at each boundary:

wi =
1− (−1)σ

2
π + 2πit · xi, 0 ≤ xi ≤ 1 (61)

σ = 0, 1 labels the left and right boundary.

We want 2 insertions at each boundary, labeled by i = 1, 2, σ = 0, and i = 3, 4, σ = 1; the
amplitude can then be reduced to:

A = igno (2π)d δd
(∑

i ki
)∏

k

2

ˆ 1

0

dxk

ˆ ∞

0

dt
2t

(
8π2α′t

)−d/2
η(it)−(d−2)(2πt)n

∏
i<j

|Wij(xij , t)|2α
′ki·kj ,

Wij(xij , t) = η(it)−3 ϑ1,2

(
ixijt

∣∣ it) exp
(
−πx2

ijt
) (62)

There is an additional factor of 2 since
´
∂M

dω = 2
´

dx, which includes the contribution after
exchange of the two ends 12 ↔ 34. Also, ϑ1,2 = ϑ1 or ϑ2, depending on whether the vertex operators

9 Reference: arXiv:0812.4408.

https://arxiv.org/abs/0812.4408
https://arxiv.org/abs/0812.4408
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i and j are on the same boundary or not; this is because:

ϑ1
(
ixijt− 1

2

∣∣ it) = −ϑ2
(
ixijt

∣∣ it) (63)

The η(it)−3 factor in Wij can be further extracted using the on-shell condition α′k2i = 1. More
specifically, we have:

∑
i<j

2α′ki · kj = α′
(∑

i

ki

)2
− α′

∑
i

k2i = 0− n = −n (64)

Therefore, we have:

A = igno (2π)d δd
(∑

i ki
)∏

k

ˆ 1

0

dxk

ˆ ∞

0

dt
t

(
8π2α′t

)−d/2
(2πt)nη(it)3n−(d−2)

∏
i<j

∣∣W ′
ij(xij , t)

∣∣2α′ki·kj ,

W ′
ij(xij , t) = ϑ1,2

(
ixijt

∣∣ it) exp
(
−πx2

ijt
) (65)

To further simplify the expression, collect all the numerical coefficients:

igno (2π)
d
(
8π2α′)−d/2(2π)n = igno (2π)

d 2−d/2(2π)−dα′−d/2(2π)n = igno (2π)
n 2−d/2α′−d/2 (66)

In our case n = 4 and d = 26.

The t integral can be magically simplified using modular transformations of the ϑ functions10;
with t = 1

u , we have:

F (x) =

ˆ ∞

0

dt tn−1−d/2η(it)3n−(d−2)
∏
i<j

∣∣W ′
ij(xij , t)

∣∣2α′ki·kj

=

ˆ ∞

0

du η(iu)3n−(d−2)
∏
i<j

|ϑ1,4(xij |iu)|2α
′ki·kj

(67)

The amplitude can then be neatly written as:

A = igno (2π)
n 2−d/2α′−d/2 δd(

∑
i ki)

∏
k

ˆ 1

0

dxk F (x) (68)

(b) The “long cylinder” limit corresponds to the t → 0 contributions in the above amplitude.
Note that the full amplitude is an integral over the moduli t = 1

u ,

F (x) =

ˆ ∞

0

du f(x, u), u =
1

t
, f(x, u) = η(iu)3n−(d−2)

∏
i<j

|ϑ1,4(xij |iu)|2α
′ki·kj , (69)

We need only look at the integrand f(x, u) as u→ ∞, or q ≡ e−2πu → 0. In this case f(x, u) can be
expanded as power series; ϑ4 contributions turn out to be sub-leading, hence the product only needs
to go over i, j on the same side, denoted as (i, j)σ. We have:

f(x, u) = q
3n−(d−2)

24

∏
(i<j)σ

|2 sinπxij |2α
′ki·kjq

2α′ki·kj
8

(
1 +O(q)

)
(70)

10 Reference: arXiv:0812.4408 and Polchinski’s summary of ϑ function properties.

https://arxiv.org/abs/0812.4408
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Again we can simplify using on-shell conditions and Mandelstam variables; we have:∑
(i<j)σ

2α′ki · kj =
∑
i<j

2α′ki · kj −
∑
i,σ=0

∑
j,σ=1

2α′ki · kj

= −n− 2α′
∑
i,σ=0

ki
∑
j,σ=1

kj

= −n− 2α′s, s = −
( ∑
i,σ=0

ki

)2
= −

( ∑
i,σ=1

ki

)2 (71)

Where s is the mass squared of the intermediate state propagating along the long cylinder, from one
end to another. With this we find that:

f(x, u) = q
3n−(d−2)

24 +−n−2α′s
8

∏
(i<j)σ

|2 sinπxij |2α
′ki·kj(1 +O(q)

)
= q−1−α′s

4

∏
(i<j)σ

|2 sinπxij |2α
′ki·kj(1 +O(q)

) (72)

Upon integrating over u, each qk in the power series above produces a pole in s:ˆ ∞

0

du q−1−α′s
4 qk ∝ 1

k − 1− α′s
4

∝ 1

s− 4
α′ (k − 1)

(73)

Apparently every integer power k appears in the expansion, hence we have the full closed string
spectrum at s = 4

α′ (k − 1), k = 0, 1, 2, · · · .

K L

Consider the tachyon pole, i.e. k = 0, s = − 4
α′ ; this contribution is represented as two disk

diagrams linked by a closed string tachyon propagator; each disk has 3 insertions, two incoming (or
outgoing) open string tachyons and one outgoing (or incoming) closed string tachyon.

By unitarity of the 4-point amplitude11, sum of all such factorized diagrams should be equal
to the original cylinder diagram; therefore, the strength of the tachyon pole, calculated from such
two-disk diagram, should be equal to our previous calculations from the cylinder diagram.

On the other hand, by unitarity of the 3-point amplitude, the incoming and the outgoing disk
diagrams have the same contributions. Therefore, we should expect that the closed string tachyon
pole strength is equal to the square of the disk amplitude with 3 insertions.

(c) For the disk diagram, we have two open string insertions at the boundary, and one close
string insertion in the disk; when mapped to the upper half plane, we can use the 3 CKVs to fix
the closed string insertion at (z, z̄) and one open string insertions at x1, while integrating over the
position x2 of the remaining open string insertion:

AD = gcg
2
oe

−λ
ˆ

dx2
〈
: cc̃ eik·X : : cx1 e

ik1·X1 : :eik2·X2 :
〉

= gcg
2
o iC (2π)d δd(

∑
i ki) |z − x1||z̄ − x1||z − z̄|

×
ˆ

dx2 |z − z̄|α
′k2/2|x1 − x2|2α

′k1·k2
∏
i

|z − xi|2α
′k·ki

(74)

11 Reference: Polchinski, Chapter 9.
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Again note the doubling of exponents due to the image charges. With on-shell conditions, we get:

AD = iCgcg
2
o (2π)

d δd(
∑
i ki) |z − x1|−2|z − z̄|3

ˆ
dx2 |x1 − x2|2|z − x2|−4

= iCgcg
2
o (2π)

d δd(
∑
i ki) · 4π

(75)

Furthermore, C can be fixed by comparing the 4-tachyon and 3-tachyon open string disk ampli-
tudes12; we get:

C =
1

α′g2o
, AD =

4πigc
α′ (2π)d δd(

∑
i ki) (76)

Combined with the closed string tachyon propagator, the factorized diagram described in (b) is then
given by:

A′
0 =

(
4πigc
α′

)2
i

s− (− 4
α′ )

(2π)d δd(
∑
i ki) (77)

On the other hand, the tachyon pole in (b) is given by:

A0 = ig4o (2π)
4 2−d/2α′−d/2 δd(

∑
i ki)

∏
k

ˆ 1

0

dxk F (x)

' ig4o (2π)
4 2−d/2α′−d/2 δd(

∑
i ki)

∏
k

ˆ 1

0

dxk
(
− sin2(πx12) sin2(πx34)

25

πα′
1

s− (− 4
α′ )

)
= −ig4o (2π)3 2−d/2+4α′−d/2−1 δd(

∑
i ki)

1

s− (− 4
α′ )

(78)

Imposing A′
0 = A0 gives our desired relation, with ls =

√
α′:

g2o = 23(d−2)/4π(d−1)/2α′(d−2)/4gc = 218π25/2l12s gc (79)
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