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1 Partition Function for Compact Scalars

(a) Mode expansion of X CFT is1:

∂X(z) = −i
√
α′

2

∞∑
m=−∞

αm

zm+1
, ∂̄X(z̄) = −i

√
α′

2

∞∑
m=−∞

α̃m

z̄m+1
, (1)

X = x− i
√
α′

2

(
α0 ln z + α̃0 ln z̄

)
+ i

√
α′

2

∑
m ̸=0

1

m

(
αm

zm
+
α̃m

z̄m

)
, (2)

Momentum p is the charge for spacetime translation; we have:

X 7→ X + const, ja =
i

α′ ∂aX, (3)

p =
1

2πi

∮
C

(
dz j − dz̄ j̃

)
=

1

α′

√
α′

2

(
α0 + α̃0

)
=

√
1

2α′

(
α0 + α̃0

)
(4)

Additionally, for compact free boson, X is only defined modulo 2πR; therefore, states after
X + 2πR translation should be identical to the original states, i.e.

eip (2πR) = 1, p =
n

R
, n ∈ Z (5)

This, in fact, holds for any field theory2 defined for X ∈ S1, including the ordinary quantum me-
chanics (a classical field theory) on S1.

On the other hand, there are additional constraints in string theory: for the state of a single
closed string, there is a discrete translational symmetry on the worldsheet:

X(σ1 + 2π) ∼= X(σ1), X(σ1 + 2π) = X(σ1) + 2πRw, w ∈ Z (6)

With some definite winding number w. In (z, z̄) coordinates, we have:

2πRw = X
(
z e2πi, z̄ e−2πi

)
−X(z, z̄) = −i

√
α′

2
2πi

(
α0 − α̃0

)
= 2π

√
α′

2

(
α0 − α̃0

)
, (7)

p =
pL + pR

2
, pL =

√
2

α′ α0, pR =

√
2

α′ α̃0, (8)

pL,R =
n

R
± wR

α′ , (9)

X = x− i α
′

2

(
pL ln z + pR ln z̄

)
+ i

√
α′

2

∑
m ̸=0

1

m

(
αm

zm
+
α̃m

z̄m

)
, (10)

For the oscillator expressions for L0, recall that:

T (z) = − 1

α′ :∂X ∂X : =
∑
m

Lm

zm+2
, (11)

Lm ̸=0 =
1

2

∑
l

αm−lαl, L0 =
1

2
:
∑
l

α−lαl : ∼
α′p2L
4

+
∑
l>0

α−lαl, (12)

1 Again we follow the convention of Polchinski.
2 Reference: discussions in Polchinski, §8.2.
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The L0 expression may be off by some normal ordering constant; this ambiguity can be resolved by
considering:

2L0 |0, 0;n = w = 0〉 = (L1L−1 − L−1L1) |0, 0; pL = pR = 0〉 = 0− 0 = 0 (13)

Therefore the normal ordering constant is, in fact, trivial, and we have:

L0 =
α′p2L
4

+
∑
l>0

α−lαl, L̃0 =
α′p2R
4

+
∑
l>0

α̃−lα̃l, (14)

(b) The torus partition function is given by:

〈1〉T 2 ≡ Z(τ = τ1 + iτ2) =

ˆ
DX e−S = Tr e−(2πτ2)Hei (2πτ1)P (15)

Here P generates worldsheet translation along σ1, not to be confused with p which generates spacetime
translation; with z = e−iw, w = σ1 + iσ2,

T 0
1 = η00 (∂0σ

2)T21 = −iT12 = −i
(
Tww (∂1w)(∂2w) + Tw̄w̄ (∂1w̄)(∂2w̄)

)
= Tww − Tw̄w̄

=
(
Tzz (∂wz)

2 + c
24

)
−
(
Tz̄z̄ (∂w̄z̄)

2 + c̃
24

)
= T (z) (−iz)2 − T̃ (z̄) (+iz̄)2 + c− c̃

24
,

(16)

P =

ˆ dσ1
2π

(
−T 0

1

)
= −

ˆ dσ1
2π

T (z) (−iz)2 +
ˆ dσ1

2π
T̃ (z̄) (+iz̄)2 − c− c̃

24

= +

‰ dz
2π (−iz)

T (z) (−iz)2 +
‰ dz̄

2π (+iz̄)
T̃ (z̄) (+iz̄)2 − c− c̃

24

=

∮ dz
2πi

zT (z)−
∮ dz̄

2πi
z̄T̃ (z̄)− c− c̃

24

= L0 − L̃0 −
c− c̃
24

=
(
L0 − c

24

)
−
(
L̃0 − c̃

24

)
,

H =

ˆ dσ1
2π

T 0
0 =

ˆ dσ1
2π

T22

= L0 + L̃0 −
c+ c̃

24

=
(
L0 − c

24

)
+
(
L̃0 − c̃

24

)
,

(17)

Here we’ve used the fact that
∮ dz̄

z̄
=

‰ dz̄
z̄

= 2πi. Therefore,

Z(τ) = Tr e−(2πτ2)Hei (2πτ1)P = Tr qL0−
c
24 q̄L̃0−

c̃
24 , q = e2πiτ (18)

Note that here we are working in the grand canonical ensemble, where we have temperature
β = 2πτ2 and chemical potential 2πτ1. At this stage P is not fixed, and we should sum over all states
with various P . To go to the canonical ensemble, we do a Legendre transform and trade τ1 for some
P ′. This is implemented by a Laplace / Fourier transform of the partition function:ˆ

dτ1 e−i (2πτ1)P
′

(19)

In string theory, we should actually work with the canonical ensemble (and eventually, the micro-
canonical ensemble), since we would like to impose the level matching condition, namely P ′ = 0.
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This is because we would like to gauge the worldsheet translation along σ1 generated by P , which is
understood as a redundancy.

However, in string theory, the Fourier transform is implicit as we integrate along τ1 in the moduli
space; roughly speaking, we have:

ˆ
dτ1 e−i (2πτ1)(P−0) ∼ δ(P − 0) (20)

As τ1 gets integrated out, we are effectively computing Tr′ e−βH where the trace only goes over the
P = 0 sector of the Hilbert space3.

On the other hand, since we are computing the grand partition function Z(τ1 + iτ2) for now, we
should not impose the level matching condition, and the sum should go over all states with various
P , although this is a much larger Hilbert space than the physical P = 0 subspace in string theory.

Using the expressions in (a), we find that L0 action on a state |ψ〉 created by α−l, α̃−l yields the
sum of occupation number Nl weighted by l:

L0 |ψ〉 =

(
α′k2L
4

+
∑
l>0

l ·Nl

)
|ψ〉 (21)

With c = c̃ = 1, we obtain:

Z(τ) = (qq̄)−
1
24

∑
n,w

e−2πτ2α
′ k2

L+k2
R

4 e2πiτ1α
′ k2

L−k2
R

4

∑
(Nl),(Ñl)

q

∑
l>0

l·Nl

q̄

∑
l>0

l·Ñl

= (qq̄)−
1
24

∑
n,w

e
−πτ2

(
α′n2

R2 +w2R2

α′

)
+2πiτ1nw

∑
(Nl),(Ñl)

∏
l>0

ql·Nl q̄ l·Ñl

= |η(τ)|−2
∑
n,w

e
−πτ2

(
α′n2

R2 +w2R2

α′

)
+2πiτ1nw

(22)

We’ve simplified the contributions from the oscillator modes using η(τ), since they are identical to
the oscillator contributions of the non-compact X ∈ R1:

(qq̄)−
1
24

∑
(Nl),(Ñl)

∏
l>0

ql·Nl q̄ l·Ñl = (qq̄)−
1
24

∏
l>0

∞∑
Nl,Ñl=0

ql·Nl q̄ l·Ñl

= (qq̄)−
1
24

∏
l>0

1

1− ql
1

1− q̄ l
= |η(τ)|−2

(23)

3 This is nicely explained in David Tong’s String Theory. See also §6.3 of Blumenhagen et al, Basic Concepts of String
Theory. See also §2.1, 2.2 of arXiv:1912.07654 where the switch between ensembles is reviewed in the context of
holography.

https://www.damtp.cam.ac.uk/user/tong/string.html
https://arxiv.org/abs/1912.07654
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In the R→∞ limit, only the w = 0 modes survive; all other modes are exponentially suppressed
by the e−πτ2w

2R2/α′ factor; i.e.

Z(τ) = |η(τ)|−2
∑
n,w

exp
{
−πτ2

(
α′n2

R2
+
w2R2

α′

)
+ 2πiτ1nw

}

→ |η(τ)|−2
∑
n

exp
{
−πτ2

α′n2

R2

}
, k =

n

R

→ |η(τ)|−2
V

ˆ dk
2π

exp
{
−πτ2 α′k2

}
= V |η(τ)|−2(

4π2α′τ2
)− 1

2

≡ V · ZX(τ) = 2πRZX(τ)

(24)

We recover the partition function V · ZX(τ) for non-compact X, as expected.

(c) Using the Poisson resummation formula, we find that:

Z(τ) = 2πRZX(τ)
∑
m,w

exp
(
−πR

2|m− wτ |2

α′τ2

)
(25)

ZX(τ) is modular invariant by the properties of the Dedekind η(τ) function, as is demonstrated for
the non-compact X in Polchinski.

The sum, on the other hand, is naturally invariant under T : τ 7→ τ + 1, by making a change of
variables m 7→ m + w. It is also invariant under S : τ 7→ −1/τ with m 7→ −w,w 7→ m 4. Therefore,
Z(τ) is modular invariant.

2 Z2 Orbifold

The Z2 orbifold is constructed by imposing an additional identification on X ∈ S1:

X ∼= −X (26)

The target space is then reduced to S1/Z2
∼= [0, πR].

(a) The first contributions to the orbifold partition function comes from the states that are
invariant under reflection r; we have:

TrS1/Z2
= TrS1

1 + r

2
=

1

2
TrS1 +

1

2
TrS1 ◦ r (27)

Acting on qL0−
c
24 q̄L̃0−

c̃
24 , the first term gives 1

2 ZS1(τ) where ZS1 is the S1 partition function we’ve
obtained in 1 .

For the second term, note that the action of r on a state can be deduced from its action on the
modes αm, α̃m, which is in turn induced from the action r : X 7→ −X through the mode expansion
(10). In particular, we have r : α−m 7→ −α−m, which means that5:

r ◦ α−m ◦ r−1 = −α−m, r |Nm〉 ∼ r ◦ αNm
−m |0〉 ∼ (−1)Nm |Nm〉 , (28)

4 Reference: Polchinski.
5 Reference: Blumenhagen et al, Basic Concepts of String Theory, §10.5.
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r :
∣∣∣(Nl), (Ñl);n,w

〉
7−→ (−1)

∑
l(Nl+Ñl)

∣∣∣(Nl), (Ñl);−n,−w
〉

(29)

In particular, it reverses n,w, hence r insertion gives vanishing amplitude unless n = w = 0. The
summation is very much similar to the ZS1 case, i.e. we have:

1

2
TrS1

(
r qL0−

c
24 q̄L̃0−

c̃
24

)
=

1

2
(qq̄)−

1
24

∏
l>0

∞∑
Nl,Ñl=0

(−1)Nl+Ñlql·Nl q̄ l·Ñl

=
1

2
(qq̄)−

1
24

∏
l>0

1

1− (−ql)
1

1− (−q̄ l)
=

∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣
(30)

Where we’ve used the fact that6: q− 1
24

∏
l>0

1
1−(−ql)

=
√
2
√

η(τ)
θ2(τ)

. Therefore, the total contributions
from r–invariant states are:

1

2
ZS1(τ) +

∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣ (31)

Physically, r invariant states are stationary waves:
1 + r

2
|(Nl), (Ñl);n,w〉 =

1

2

(
|(Nl), (Ñl);n,w〉+ (−1)

∑
l(Nl+Ñl) |(Nl), (Ñl);−n,−w〉

)
, (32)

which is a superposition of states with opposite momentum and winding, such that 〈pL〉 = 〈pR〉 = 0.
Note that a general r invariant state is a linear combination of such states and may have non-vanishing
momentum: 〈p〉 6= 0. In position space these states have unconstrained x = xL +xR ∈ [0, πR]. More
precisely, if we define the position basis: x |x′〉 = δ(x− x′) |x′〉, then we have:〈

(Nl), (Ñl);x
∣∣∣ 1 + r

2

∣∣∣(Nl), (Ñl);n
〉
∝ 1

2

(
ei

n
Rx + (−1)

∑
l(Nl+Ñl)e−i n

Rx
)

=

{ cos nx
R ,

∑
l(Nl + Ñl) even

sin nx
R ,

∑
l(Nl + Ñl) odd

(33)

The wave function (cos nx
R ) is what we expect: we get the same result if we turn off the oscillator

modes N, Ñ altogether; in this case we have a worldline quantum mechanics with target S1/Z2,
which is equivalent to the spacetime QFT on S1/Z2. Since we are only considering the worldline
geometry S1, we are restricting to the 1-particle sector of the spacetime QFT, which is again a
quantum mechanical system. The wave functions compatible with Z2 action are precisely given by
(cos nx

R ). On the other hand, the case with (sin nx
R ) doesn’t seem to be Z2 invariant in the position

space. This is due to the Z2 odd stringy excitations, which can be understood as some additional
degrees of freedom, similar to the spin of a particle. This compensates for the Z2 odd (sin nx

R ), and
the full wave function is Z2 invariant.

(b) With X ∼= −X, new possibilities emerge as the boundary condition along σ1:

X(σ1 + 2π) ∼= X(σ1), X(σ1 + 2π) = ±X(σ1) + 2πRw, w ∈ Z (34)

The “−” sign corresponds to the twisted states. Due to the anti-periodicity, ∂X has a half-integer
mode expansion:

∂X
(
z e2πi

)
= −∂X(z), (35)

6 Reference: Blumenhagen & Plauschinn, Introduction to CFT, and also Polchinski.
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∂X(z) = −i
√
α′

2

∞∑
m=−∞

αm− 1
2

zm+ 1
2

, ∂̄X(z̄) = −i
√
α′

2

∞∑
m=−∞

α̃m− 1
2

z̄m+ 1
2

, (36)

X = x+ i

√
α′

2

∞∑
m=−∞

1

m+ 1
2

(
αm+ 1

2

zm+ 1
2

+
α̃m+ 1

2

z̄m+ 1
2

)
, (37)

Apply the boundary condition on X, and we find that x = πRw; however, due to the identification
X + 2πR ∼= X ∼= −X, there are only two inequivalent choices:

x = 0, x = πR, (38)

which correspond to the string localized around either of the two fixed points of the Z2 action. There
is no momentum or winding, not even in the mode expansion.

Intuitively, the twisted boundary condition is realized only when the string is stretched around
the fixed points of the orbifold action. For example, an open string that ends on X and X+2πR ∈ R1

becomes a closed winding string when we consider R1/(2πRZ) = S1. Similarly, an open string that
ends on ±X becomes a closed string in the twisted sector, after we take S1/Z2.

Much similar to the case in 1 , we have:[
α 1

2+l, α− 1
2−l

]
=

1

2
+ l, (39)

Lm̸=0 =
1

2

∑
l

αm− 1
2−lα 1

2+l, L0 =
1

2
:
∑
l

α− 1
2−lα 1

2+l : ∼
∑
l≥0

α− 1
2−lα 1

2+l (40)

We can use the same trick to fix the normal ordering constant in L0; this time it is non-trivial:

L−1 =
1

2
α2
− 1

2
+
∑
l≥0

α− 1
2−lα 1

2+l, L1 =
1

2
α2

1
2
+
∑
l>0

α 1
2−lα 1

2+l, (41)

L0 |0, 0;x〉 =
1

2
(L1L−1 − L−1L1) |0, 0;x〉

=
1

2
× 1

4
α2

1
2
α2
− 1

2
|0, 0;x〉 − 0

=
1

16
|0, 0;x〉 ,

(42)

L0 =
1

16
+
∑
l≥0

α− 1
2−lα 1

2+l =
1

16
+
∑
l≥0

(
l +

1

2

)
Nl+ 1

2
=

1

16
+
∑
l>0

(
l − 1

2

)
Nl− 1

2
, (43)

The trace can then be computed, following the same recipe as before:

r :
∣∣∣(Nl), (Ñl);x

〉
7−→ (−1)

∑
l(Nl+Ñl)

∣∣∣(Nl), (Ñl);−x
〉
, −x ≡ x, x = 0, πR, (44)

TrS1

(
1 + r

2
qL0−

c
24 q̄L̃0−

c̃
24

)
= (qq̄)−

1
24+

1
16

∏
l+ 1

2∈Z+

∞∑
Nl,Ñl=0

1 + (−1)Nl+Ñl

2
ql·Nl q̄ l·Ñl × 2

=
1

2
(qq̄)+

1
48

{∏
l>0

∣∣∣∣ 1

1− ql− 1
2

∣∣∣∣2 +∏
l>0

∣∣∣∣ 1

1 + ql−
1
2

∣∣∣∣2
}
× 2

=

∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣
(45)

There is an extra factor of 2 from the number of twisted sectors: x = 0 and x = πR.
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(c) The full partition function is therefore:

Z(τ) =
1

2
ZS1(τ) +

∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣ (46)

The first term is modular invariant, as is proven in 1 .

The remaining terms are also modular invariant, due to the transformational properties of η and
θ functions7:

T ⟳
∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣ S←−→
∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣ T←−→
∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣ ⟲ S (47)

Therefore, the full partition function is modular invariant.

3 Torus 4-point function in bc CFT〈
c(w1) b(w2) c̃(w̄3) b̃(w̄4)

〉
=

ˆ
DbDb̃DcDc̃ c(w1) b(w2) c̃(w̄3) b̃(w̄4) e

−S′
≡ Z ′ (48)

First we argue that only the zero modes of the insertions survive the path integral8. In fact, as
anti-commuting replacements of the gauge degrees of freedom, ghost modes are defined to be the
eigenvalues of P †P , where P is the conformal Killing differential9. More specifically, given a conformal
Killing vector (CKV) δσa, the conformal Killing equation can be written as:

P δσ = 0 (49)

While P †δ′g = 0 gives moduli variation δ′gab of the metric. Roughly speaking, P captures the
variation of gauge fixing under an arbitrary gauge transformation; naturally, CKV’s are given by
(kerP ), while (detP ) ∼ ∆FP is the Faddeev–Popov functional measure near the gauge slice. (detP )
can then be calculated with:

δσa 7→ ca, δ′gab 7→ bab, ∆FP ∼ detP ∼
ˆ

DbDb̃DcDc̃ e−S′
, (50)

S′ =
1

2π

ˆ
d2σ g1/2 bab (P · c)ab =

1

2π

ˆ
d2w

(
b ∂̄wc+ b̃ ∂w c̃

)
(51)

In the end we have chosen conformal gauge, such that10 P ∼ (∂̄w, ∂w), P
†P ∼ −∂̄w∂w = −∇2. In

the w = σ1 + iσ2 coordinates, CKV’s are simple translations: ca = const; with z = e−iw, it gets
mapped to cz = cw ∂wz = cw (−iz), which agrees with the zero mode c0 in the c(z) expansion:

c(z) =

∞∑
m=−∞

cm
zm+1−λ

= c0 z +
∑
m̸=0

cm
zm−1

, λ = 2 (52)

Now we are finally ready to prove our argument: for anti-commuting variables like c(z),ˆ
Dc ∼

∏
m

ˆ
dcm ∼

∏
m

∂

∂cm
(53)

7 Reference: Blumenhagen & Plauschinn.
8 I would like to thank 谷夏 for some very helpful discussions about this problem.
9 Reference: Polchinski, Chapter 3 & 5.
10 References:

•Nakahara, Geometry, Topology and Physics;
•Blumenhagen et al, Basic Concepts of String Theory.
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Since c0 corresponds to a CKV, P · c0 = 0, therefore it vanishes in S′ =
´

d2σ (b · P · c); for the path
integral to be non-zero, there has to be some additional c0 insertions, i.e.

Z ′ ∼
ˆ

DbDb̃DcDc̃ c0b0c̃0b̃0 e
−S′
∼
(

1
√
τ2

)4̂
D′bD′b̃D′cD′c̃ e−S′

,

ˆ
D′c ∼

∏
m ̸=0

ˆ
dcm (54)

Note the additional
(

1√
τ2

)4 factor coming from the zero modes11; this has to do with the nor-
malization of the zero modes, each contributing a factor of 1√

A
, where A ∼ τ2 is the volume (surface

area) of the torus. On a different note, since it is very difficult, if not impossible, to keep track of
various (often divergent) constant factors in the path integral, we have been and will be calculating
Z ′ up to an overall constant coefficient.

Now we have to deal with the path integral over non-zero modes. Note that the holomorphic
mode expansion (52) is incomplete for our purpose: it gives the on-shell mode expansion, while our
path integral should go over all possible configurations, including the off-shell modes, which is not
holomorphic. However, on T 2 = S1 × S1, the full modes are simple12:

−∇2ψn1,n2
= λn1,n2

ψn1,n2
, (55)

ψn1,n2
= exp

(
i (n1σ̃

1 + n2σ̃
2)
)
, σ̃2 =

σ2

τ2
, σ̃1 = σ1 − σ2 τ1

τ2
,

= exp
{
i

(
n1σ

1 +
n2 − n1τ1

τ2
σ2

)}
,

(56)

Here we first use the “rectangular” coordinates (σ̃1, σ̃2) ∈ [0, 2π]2 to write down the obvious eigen-
functions ψn1,n2 , and then relate them back to the (σ1, σ2) coordinates. Therefore, we have:

λn1,n2
=

{
n21 +

(
n2 − n1τ1

τ2

)2}

=
1

τ22

{
(n1τ2)

2 +
(
n1τ1 − n2

)2}
=

1

τ22
|n1τ − n2|2,

(57)

det′ P ∼
( ∏′

n1,n2

√
λn1,n2

)2

∼
∏′

n1,n2

λn1,n2
(58)

The determinant can be computed with ζ-function regularization, as is performed in detail in Di
Francesco; the result can be nicely summarized using the Eisenstein series, as shown in Nakahara:

E(τ, s) =
∑′

n1,n2

τs2

|n1τ − n2|2s
, (59)

det′ P ∼
∏′

n1,n2

1

τ22
|n1τ − n2|2 ∼ τ2 exp

{
−∂sE′(τ, s)s=0

}
= τ22 |η(τ)|

4 (60)

Finally, we have:
Z ′ ∼ τ−2

2 det′ P ∼ τ−2
2 τ22 |η(τ)|

4 ∼ |η(τ)|4 (61)

11 Reference: Di Francesco et al.
12 References: (1) Nakahara, (2) Di Francesco et al., and (3) http://theory.uchicago.edu/~sethi/Teaching/P483-

W2018/p483-sol3.pdf.

http://theory.uchicago.edu/~sethi/Teaching/P483-W2018/p483-sol3.pdf
http://theory.uchicago.edu/~sethi/Teaching/P483-W2018/p483-sol3.pdf
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4 Torus Propagator as a Trace

w′ → 0,
〈
∂wX(w) ∂w′X(w′)

〉
= Tr

(
∂wX(w) ∂w′X(w′) qL0−

c
24 q̄L̃0−

c̃
24

)
(62)

Here we’ve dropped the time ordering in the w′ → 0 limit. Recall the mode expansion of ∂X in 1 ;
we see that only the “diagonal” components of ∂X(w) ∂X(w′) survive in the trace, i.e.

∂wX(w) ∂w′X(w′) = (∂wz)(∂w′z′) ∂zX(z) ∂z′X(z′), z = e−iw, 1 ≤ |z| ≤ e2πτ2

∼ −α
′

2

∞∑
n=−∞

α−nαn

z−n+1z′n+1
(−iz)(−iz′)

=
α′

2

(
α2
0 +

∑
n>0

(( z
z′

)n
+
(z′
z

)n)
α−nαn +

∑
n>0

n
(z′
z

)n)

=
α′

2

(
α2
0 +

∑
n>0

(( z
z′

)n
+
(z′
z

)n)
α−nαn +

zz′

(z − z′)2

)
(63)

The last term is a normal ordering constant; here it is naturally regularized by
(
z′

z

)n
.

The α2
0 term can be substituted with spacetime momentum p; we have:

p =

√
1

2α′

(
α0 + α̃0

)
=

√
1

2α′ 2α0 =

√
2

α′ α0, (64)

∂wX(w) ∂w′X(w′) ∼ α′

2

(
α′p2

2
+
∑
n>0

(( z
z′

)n
+
(z′
z

)n)
nNn

)
(65)

On the other hand, the partition function is:

Z(τ) = 〈1〉 = (qq̄)−
1
24 V

ˆ dk
2π

e−πτ2 α′k2 ∑
(Nl),(Ñl)

q

∑
l>0

l·Nl

q̄

∑
l>0

l·Ñl

= (qq̄)−
1
24 V

ˆ dk
2π

e−πτ2 α′k2 ∑
(Nl),(Ñl)

∏
l>0

ql·Nl q̄ l·Ñl

= |η(τ)|−2
V

ˆ dk
2π

e−πτ2 α′k2

(66)

We can work out Z−1〈∂X∂X〉 by considering term by term insertion of the ∂X∂X mode expan-
sion into the above expression. For the α′p2

2 term, we have a contribution of:
ˆ dk

2π

α′k2

2
e−πτ2 α′k2

ˆ dk
2π

e−πτ2 α′k2
=
α′

2

1

2 · πα′τ2
=

1

4πτ2
(67)

For the nNn insertion, we have a contribution of:∑
(Nl)

nNn q

∑
l>0

l·Nl

∑
(Nl)

q

∑
l>0

l·Nl

=

∑
(Nl)

nNn

∏
l>0

ql·Nl

∑
(Nl)

∏
l>0

ql·Nl

=

∞∑
Nn=0

nNn q
n·Nn

∞∑
Nn=0

qn·Nn

=

nqn
∂

∂(qn)

∞∑
Nn=0

qn·Nn

∞∑
Nn=0

qn·Nn

=
nqn ∂

∂(qn)
1

1−qn

1
1−qn

=
nqn

1− qn

(68)
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Therefore, the complete result is given by:

1

Z(τ)

〈
∂wX(w) ∂w′X(w′)

〉
=
α′

2

(
1

4πτ2
+
∑
n>0

(( z
z′

)n
+
(z′
z

)n) nqn

1− qn
+

zz′

(z − z′)2

)
w′→0−−−−→
z′→1

α′

2

(
1

4πτ2
+
∑
n>0

(
zn + z−n

) nqn

1− qn
+

z

(z − 1)2

) (69)

On the other hand, the torus propagator is given by:

G′(w, w̄;w′, w̄′) = −α
′

2
ln |f(w − w′, τ)|2 + α′

4πτ2

(
Im (w − w′)

)2
, (70)

f(w, τ) ≡ θ1
(
w

2π

∣∣∣∣ τ) = 2 e
iπτ
4 sin w

2

∞∏
m>0

(1− qm)(1− z−1qm)(1− zqm), z = e−iw (71)

We find that ∂w∂w′G′ contains the same zero mode contribution α′

8πτ2
and normal ordering contri-

bution α′

2
z

(z−1)2 as in (69):

∂w∂w′G′(w, w̄;w′, w̄′)w′=0 =
α′

8πτ2
+
α′

2
∂2w ln f(w, τ), (72)

∂2w ln f(w, τ) = ∂2w ln sin w
2
+ ∂2w

∑
m>0

(
ln (1− zqm) + ln (1− z−1qm)

)
, (73)

∂2w ln sin w
2

= ∂2w ln sin w
2

= − 1

4 sin2w
2

=
1

2 (cosw − 1)
=

1

z + z−1 − 2
=

z

(z − 1)2
, (74)

The remaining parts come from oscillator modes; they also match with (69), but the equivalence
is less obvious: we have13:

∂2w
∑
m>0

ln (1− zqm) = ∂2w
∑
m>0

∑
n>0

− 1

n

(
zqm

)n
=
∑
n>0

∂2w

(
− 1

n
zn
)∑

m>0

qmn, ∂w = −iz ∂z

=
∑
n>0

− (−in)2

n
zn · qn

1− qn

=
∑
n>0

zn
nqn

1− qn
,

(75)

∂2w
∑
m>0

ln (1− z−1qm) =
∑
n>0

z−n nqn

1− qn
, (76)

This is precisely the contribution from oscillator modes in (69). Therefore, we have:

1

Z(τ)

〈
∂wX(w) ∂w′X(w′)

〉
w′=0

= ∂w∂w′G′(w, w̄;w′, w̄′)w′=0 (77)

13 Reference: http://theory.uchicago.edu/~sethi/Teaching/P483-W2018/p483-sol3.pdf. I would like to thank
Lucy Smith for providing this hint.

http://theory.uchicago.edu/~sethi/Teaching/P483-W2018/p483-sol3.pdf

