Bryan

Compiled @ 2023/09/14

1 Strings on Curved Space:

$$S = \frac{1}{4\pi\alpha'} \int_M \mathrm{d}^2\sigma \sqrt{g} \left(i\epsilon^{ab} B_{\mu\nu}(X) \,\partial_a X^\mu \partial_b X^\nu + \cdots \right),\tag{1}$$

$$T^{a}_{\ a} = -\frac{1}{2\alpha'} \beta^{G}_{\mu\nu} g^{ab} \partial_a X^{\mu} \partial_b X^{\nu} + \cdots, \qquad (2)$$

$$\beta_{\mu\nu}^{G} = \alpha' R_{\mu\nu} - \frac{1}{4} \alpha' H_{\mu\lambda\omega} H_{\nu}^{\ \lambda\omega} + \dots + \mathcal{O}(\alpha'^2) \tag{3}$$

We want to verify the coefficient of $\alpha' H^2$ term in $\beta^G_{\mu\nu}$; for convenience we've omitted non-related terms in the above expressions.

Note that at $\mathcal{O}(\alpha')$ such term does not depend on the metric $G_{\mu\nu}$, and it depends only on the field strength H = dB, not the potential B, hence it's safe to assume:

$$G_{\mu\nu} = \eta_{\mu\nu}, \quad B_{\mu\nu} = \frac{1}{3} H_{\mu\nu\rho} X^{\rho}, \quad H = \text{const},$$
 (4)

$$i\epsilon^{ab}B_{\mu\nu}(X)\,\partial_a X^\mu\partial_b X^\nu = \frac{i}{3}H_{\mu\nu\rho}\,X^\rho\epsilon^{ab}\partial_a X^\mu\partial_b X^\nu,\tag{5}$$

We consider small perturbation away from the classical saddle: $X = X_0 + \xi$, then the 1-loop effective action is obtained by integrating over $\mathcal{O}(\xi^2)$ terms in the perturbed action¹:

$$\Gamma^{(1)}[X_0] = -\ln \int \mathcal{D}\xi \ e^{-S^{(2)}[X_0,\xi]}, \tag{6}$$

$$\mathcal{L}^{(2)} = \frac{i}{3} H_{\mu\nu\rho} \epsilon^{ab} \left(\xi^{\rho} \partial_a X_0^{\mu} \partial_b \xi^{\nu} + \xi^{\rho} \partial_a \xi^{\mu} \partial_b X_0^{\nu} + X_0^{\rho} \partial_a \xi^{\mu} \partial_b \xi^{\nu}\right)$$

$$\sim \frac{i}{3} H_{\mu\nu\rho} \epsilon^{ab} \left(\xi^{\rho} \partial_a X_0^{\mu} \partial_b \xi^{\nu} - \xi^{\rho} \partial_a X_0^{\nu} \partial_b \xi^{\mu} - \xi^{\mu} \partial_a X_0^{\rho} \partial_b \xi^{\nu}\right)$$

$$= \frac{i}{3} H_{\mu\nu\rho} \epsilon^{ab} \cdot 3\xi^{\rho} \partial_a X_0^{\mu} \partial_b \xi^{\nu}$$

$$= i H_{\mu\nu\rho} \epsilon^{ab} \partial_a X_0^{\mu} (\xi^{\rho} \partial_b \xi^{\nu})$$

Here we've used the anti-symmetric properties of $H_{\mu\nu\rho}$, ϵ^{ab} , and ignored any total derivative after integration by parts. This term introduces a cubic interaction vertex in the free background; therefore, $\Gamma^{(1)}$ can be expressed in the following diagram²:

¹ Reference: Prof. Xi Yin's String Notes, see also arXiv:0812.4408.

² References:

- David Tong, *String Theory*;
- Callan & Thorlacius, Sigma Models and String Theory;
- Timo Weigand, Introduction to String Theory.

$$=\frac{2}{2!}\left(\frac{1}{\alpha'}\right)^2 \left(-\frac{\alpha'}{2}\right)^2 H_{\mu\lambda\omega} H_{\nu}^{\ \lambda\omega} \partial_a X_0^{\mu} \ \partial_b X_0^{\nu} \ \int \mathrm{d}^2 p \, \frac{p^2 g^{ab} - p^a p^b}{p^4} \tag{9}$$

$$= \frac{2}{2!} \left(-\frac{1}{2}\right)^2 H_{\mu\lambda\omega} H_{\nu}^{\ \lambda\omega} \partial_a X_0^{\mu} \partial_b X_0^{\nu} \left(\frac{1}{2} g^{ab}\right) \int \mathrm{d}^2 p \, \frac{1}{p^2} \tag{10}$$

$$= \frac{2}{2!} \left(-\frac{1}{2}\right)^2 \left(\frac{1}{2}\right) H_{\mu\lambda\omega} H_{\nu}^{\ \lambda\omega} \partial_a X_0^{\mu} \partial_b X_0^{\nu} g^{ab} \int \mathrm{d}^2 p \,\frac{1}{p^2} \tag{11}$$

$$= \frac{1}{8} H_{\mu\lambda\omega} H_{\nu}^{\ \lambda\omega} g^{ab} \partial_a X_0^{\mu} \partial_b X_0^{\nu} \int \mathrm{d}^2 p \, \frac{1}{p^2} \tag{12}$$

Here the $\left(\frac{1}{\alpha'}\right)^2$ coefficient comes from the vertices, while $\left(-\frac{\alpha'}{2}\right)^2$ comes from the propagators. The $p^a p^b$ integral provides an additional $\left(\frac{1}{2}\right)$ factor. The overall normalization is chosen to match the $\alpha' R_{\mu\nu}$ coefficient in $\beta^G_{\mu\nu} \subset T^a_{\ a}$, which is $\frac{1}{1!} \times \left(-\frac{1}{2}\right) \times 1 = -\frac{1}{2}$. Therefore, we have:

$$T^{a}_{\ a} \supset \frac{1}{8} H_{\mu\lambda\omega} H_{\nu}^{\ \lambda\omega} g^{ab} \partial_{a} X^{\mu}_{0} \partial_{b} X^{\nu}_{0}, \qquad (13)$$

$$\beta^{G}_{\mu\nu} \supset -\frac{1}{4} \, \alpha' H_{\mu\lambda\omega} H_{\nu}^{\ \lambda\omega} \tag{14}$$

2 Classical Solutions of 11D SUGRA: Following the convention of *Polchinski*, we have bosonic action:

$$S = \frac{1}{2\kappa^2} \int \left(\mathrm{d}^{11}x \sqrt{-g} \,\mathcal{R} - \frac{1}{2} \,G \wedge *G - \frac{1}{6} \,C \wedge G \wedge G \right),\tag{15}$$

Here G = dC: a 4-form field. In components, the numerical coefficients would be $\frac{1}{2} \mapsto \frac{1}{2 \times 4!} = \frac{1}{48}$, and $\frac{1}{6} \mapsto \frac{1}{6 \times 3! \times 4! \times 4!} = \frac{1}{20736}$.

Variation of the action yields the EOMs of our theory³; Note that:

$$\delta\sqrt{-g} = \frac{1}{2}\sqrt{-g} g^{\mu\nu} \,\delta g_{\mu\nu} = -\frac{1}{2}\sqrt{-g} \,g_{\mu\nu} \,\delta g^{\mu\nu} \tag{16}$$

 $\frac{\delta S}{\delta g^{\mu\nu}}$ is easier to compute in components; note that the $C \wedge G \wedge G$ term does not depend on $g^{\mu\nu}$, therefore it does not contribute to the EOM. We have the usual Einstein's equations:

$$R_{\mu\nu} - \frac{1}{2}\mathcal{R}g_{\mu\nu} = \kappa^2 T_{\mu\nu},\tag{17}$$

$$T_{\mu\nu} = \frac{1}{\kappa^2} \left(\frac{4}{48} G_{\mu\sigma_1\sigma_2\sigma_3} G_{\nu}^{\ \sigma_1\sigma_2\sigma_3} - \frac{1}{2} g_{\mu\nu} \cdot \frac{1}{48} G^{\sigma_1\sigma_2\sigma_3\sigma_4} G_{\sigma_1\sigma_2\sigma_3\sigma_4} \right)$$

$$= \frac{1}{12\kappa^2} \left(G_{\mu\sigma_1\sigma_2\sigma_3} G_{\nu}^{\ \sigma_1\sigma_2\sigma_3} - \frac{1}{8} g_{\mu\nu} G^{\sigma_1\sigma_2\sigma_3\sigma_4} G_{\sigma_1\sigma_2\sigma_3\sigma_4} \right)$$
(18)

³ Reference: arXiv:hep-th/9912164. I would like to thank *Lucy Smith* for many helpful discussions.

On the other hand, $\frac{\delta S}{\delta C}$ is best carried out using differential forms:

$$0 = \delta_C S = -\frac{1}{2\kappa^2} \int \left(\delta G \wedge *G + \frac{1}{6} \left(\delta C \wedge G \wedge G - 2C \wedge \delta G \wedge G \right) \right)$$

$$= -\frac{1}{2\kappa^2} \int \left(\delta(\mathrm{d}C) \wedge *G + \frac{1}{6} \left(\delta C \wedge G \wedge G + 2\delta(\mathrm{d}C) \wedge C \wedge G \right) \right)$$

$$= -\frac{1}{2\kappa^2} \int \left(-(-1)^3 \delta C \wedge \mathrm{d} *G + \frac{1}{6} \left(\delta C \wedge G \wedge G - 2(-1)^3 \delta C \wedge \mathrm{d}(C \wedge G) \right) \right)$$
(19)
$$= -\frac{1}{2\kappa^2} \int \delta C \wedge \left(\mathrm{d} *G + \frac{1}{6} \left(G \wedge G + 2(G \wedge G - C \wedge \mathrm{d}^2 C) \right) \right)$$

$$= -\frac{1}{2\kappa^2} \int \delta C \wedge \left(\mathrm{d} *G + \frac{1}{2} G \wedge G \right),$$

$$\mathrm{d} *G + \frac{1}{2} G \wedge G = 0$$
(20)

(a) We hope to find a spacetime solution which is maximally symmetric in some directions; assume that these directions form a d-dimensional sub-manifold \mathcal{M}_d with:

Coordinates:
$$x^{\mu'}, \ \mu' \in \Delta \subset \{0, 1, \cdots, 11\},$$

Induced metric: $g' = g|_{\mathcal{M}_d}$ (21)

The entire spacetime is then a direct product: $\mathcal{M}_d \times \widetilde{\mathcal{M}}_{11-d}$. For \mathcal{M}_d to be maximally symmetric, we expect that $\kappa^2 T_{\mu'\nu'} = -\Lambda g'_{\mu'\nu'}$, i.e. the *G*-field serves as a cosmological constant Λ . By staring at (18) we find that this can be achieved with⁴:

$$d = 4, \quad G_{\sigma_1 \sigma_2 \sigma_3 \sigma_4} = \alpha \sqrt{|g'|} \epsilon_{\sigma_1 \sigma_2 \sigma_3 \sigma_4}, \quad G^{\sigma_1 \sigma_2 \sigma_3 \sigma_4} = \alpha \frac{\operatorname{sgn} g'}{\sqrt{|g'|}} \epsilon^{\sigma_1 \sigma_2 \sigma_3 \sigma_4}, \quad \{\sigma_i\} \subset \Delta,$$
(22)

$$G_{\cdots \sigma \cdots} = 0, \quad \sigma \notin \Delta, \tag{23}$$

$$T_{\mu\nu} = (\operatorname{sgn} g') \frac{\alpha^2}{12\kappa^2} \left(3! \, g'_{\mu\nu} - \frac{4!}{8} \, g_{\mu\nu} \right) = (\operatorname{sgn} g') \frac{\alpha^2}{2\kappa^2} \left(g'_{\mu\nu} - \frac{1}{2} \, g_{\mu\nu} \right), \tag{24}$$

$$\Lambda g_{\mu\nu} = \mp (\operatorname{sgn} g') \frac{\alpha^2}{4\kappa^2} g_{\mu\nu}, \quad \begin{cases} -: \ \mu = \mu', \nu = \nu' \in \Delta, \quad \sim \mathcal{M}_4 \\ +: \ \mu, \nu \notin \Delta, \quad \sim \widetilde{\mathcal{M}}_7 \end{cases}$$
(25)

Matter EOM is trivially satisfied due to anti-symmetricity. We see that the other component $\widetilde{\mathcal{M}}_7$ is also maximally symmetric, but with an opposite sign in its cosmological constant.

The field equations in \mathcal{M}_4 and $\widetilde{\mathcal{M}}_7$ are both of the form $R_{\mu\nu} \propto g_{\mu\nu}$. For sgn g' = -1 i.e. Lorentzian signature, the solution is flat, AdS or dS, depending on the sign of Λ ; for sgn g' = -1, the solution is flat, spherical or hyperbolic. Therefore, we have:

$$\operatorname{sgn} g' = -1, \quad \Lambda_{4,7} = \pm \frac{\alpha^2}{4\kappa^2}, \quad \mathcal{M}_4 = \operatorname{AdS}_{3,1}, \quad \widetilde{\mathcal{M}}_7 = S^7$$

$$\operatorname{sgn} g' = +1, \quad \Lambda_{4,7} = \mp \frac{\alpha^2}{4\kappa^2}, \quad \mathcal{M}_4 = S^4, \quad \widetilde{\mathcal{M}}_7 = \operatorname{AdS}_{6,1}$$
(26)

⁴ This is in fact the famous *Freund-Robin ansatz*; see Wikipedia: *Freund - Rubin compactification*, and also the original paper: Freund & Robin, *Dynamics of Dimensional Reduction*, 1980.

(b) Global supersymmetries of a theory with the above $AdS_{4/7} \times S^{4/7}$ background are given by the solutions of:

$$0 = \delta_{\eta} \psi^{\mu} \equiv D^{\mu} \eta(x), \quad \eta: \text{ spinor}, \tag{27}$$

$$D^{\mu} = \nabla^{\mu} + \frac{1}{288} G_{\nu\rho\sigma\lambda} \left(\Gamma^{\mu\nu\rho\sigma\lambda} - 8g^{\mu\nu}\Gamma^{\rho\sigma\lambda} \right)$$

$$= \nabla^{\mu} + \frac{1}{288} G_{\nu'\rho'\sigma'\lambda'} \left(\Gamma^{\mu\nu'\rho'\sigma'\lambda'} - 8g^{\mu\nu'}\Gamma^{\rho'\sigma'\lambda'} \right)$$

$$= \nabla^{\mu} + \alpha \begin{cases} \frac{-8 \times 3!}{288} \left(-\Gamma^{\mu}\gamma_{5} \right) = \frac{1}{6} \Gamma^{\mu}\gamma_{5}, \quad \mu = \mu' \in \Delta, \quad \sim \mathcal{M}_{4} \end{cases}$$

$$\frac{4!}{288} \left(-\Gamma^{\mu} \right) = -\frac{1}{12} \Gamma^{\mu}, \quad \mu \notin \Delta, \qquad \sim \widetilde{\mathcal{M}}_{7}$$

$$(28)$$

Note that we've replaced the G indices with \mathcal{M}_4 indices, since G vanish in $\widetilde{\mathcal{M}}_7$ directions; due to antisymmetricity, the G-term can be reduced to simple Γ^{μ} multiplications according to the μ -direction⁵. Furthermore, the spin connection in ∇^{μ} is also block diagonalized, same as $g_{\mu\nu}$; hence there is a natural separation of variable⁶:

$$\eta = \eta'(x') \,\eta''(x''), \quad D_{\mu'} \eta' = 0, \quad D_{\mu''} \eta'' = 0, \tag{29}$$

$$\mu', \eta', x' \sim \mathcal{M}_4, \quad \mu'', \eta'', x'' \sim \widetilde{\mathcal{M}}_7, \tag{30}$$

Due to the presence of an additional Γ , $D_{\mu'}\eta' = 0$ has only 4 linearly independent solutions labeled by μ' , while $D_{\mu''}\eta'' = 0$ is Spin(8) (or Spin(7, 1), depending on the signature) invariant, and has $\frac{8\times7}{2} = 28$ linearly independent solutions⁷. Hence the total number of SUSYs is 4 + 28 = 32, for $AdS_{4/7} \times S^{4/7}$ background.

3 SUSY Sigma Models via Superspace:

$$D_{\bar{\theta}}\mathbf{X}^{\nu} = \left(\partial_{\bar{\theta}} + \bar{\theta}\partial_{\bar{z}}\right) \left(X^{\nu} + i\theta\psi^{\nu} + i\bar{\theta}\bar{\psi}^{\nu} + \theta\bar{\theta}F^{\nu}\right)$$

$$= i\bar{\psi}^{\nu} - \theta F^{\nu} + \bar{\theta}\bar{\partial}X^{\nu} - i\theta\bar{\theta}\bar{\partial}\psi^{\nu}, \qquad (31)$$

$$D_{\theta}\mathbf{X}^{\mu} = i\psi^{\mu} + \bar{\theta}F^{\mu} + \theta\partial X^{\mu} + i\theta\bar{\theta}\partial\bar{\psi}^{\mu},$$

$$D_{\bar{\theta}}\mathbf{X}^{\nu} D_{\theta}\mathbf{X}^{\mu} = \left(i\bar{\psi}^{\nu} - \theta F^{\nu} + \bar{\theta}\bar{\partial}X^{\nu} - i\theta\bar{\theta}\bar{\partial}\psi^{\nu}\right) \left(i\psi^{\mu} + \bar{\theta}F^{\mu} + \theta\partial X^{\mu} + i\theta\bar{\theta}\partial\bar{\psi}^{\mu}\right)$$

$$= -\tilde{\psi}^{\nu}\psi^{\mu} - i\theta\left(\tilde{\psi}^{\nu}\partial X^{\mu} + \psi^{\mu}F^{\nu}\right) + i\bar{\theta}\left(\psi^{\mu}\bar{\partial}X^{\nu} - \tilde{\psi}^{\nu}F^{\mu}\right)$$

$$- \theta\bar{\theta}\left(\bar{\partial}X^{\nu}\partial X^{\mu} + \tilde{\psi}^{\nu}\partial\tilde{\psi}^{\mu} - (\bar{\partial}\psi^{\nu})\psi^{\mu} + F^{\nu}F^{\mu}\right),$$

$$(32)$$

$$G_{\mu\nu}(\mathbf{X}) = G_{\mu\nu} + \left(i\theta\psi^{\lambda} + i\bar{\theta}\tilde{\psi}^{\lambda} + \theta\bar{\theta}F^{\lambda}\right)\partial_{\lambda}G_{\mu\nu} + \frac{1}{2}\left\{i\theta\psi^{\rho}\partial_{\rho}, \, i\bar{\theta}\tilde{\psi}^{\sigma}\partial_{\sigma}\right\}G_{\mu\nu} = G_{\mu\nu} + \left(i\theta\psi^{\lambda} + i\bar{\theta}\tilde{\psi}^{\lambda}\right)G_{\mu\nu,\lambda} + \theta\bar{\theta}\left(F^{\lambda}G_{\mu\nu,\lambda} + \psi^{\rho}\tilde{\psi}^{\sigma}G_{\mu\nu,\rho\sigma}\right),$$
(33)

 $^{^{5}}$ Reference for Γ-matrices and spinors: *Polchinski* Vol. II, Appendix B. I'm a bit confused about all the complicated conventions, therefore the coefficients might be off by some factors...

⁶ See arXiv:hep-th/9912164 for more detailed discussions.

⁷ Reference: Achilleas Passias, Aspects of Supergravity in Eleven Dimensions.

Note that $\int d^2\theta = \partial_\theta \partial_{\bar{\theta}}$, hence we need only focus on the $\theta\bar{\theta}$ term in the Lagrangian:

$$4\pi S_{G} = \int d^{2}z \, d^{2}\theta \, G_{\mu\nu}(\mathbf{X}) \, D_{\bar{\theta}} \mathbf{X}^{\mu} D_{\theta} \mathbf{X}^{\nu} = \int d^{2}z \, d^{2}\theta \, (-\theta\bar{\theta}) \Big(G_{\mu\nu} \big(\partial X^{\mu} \bar{\partial} X^{\nu} + \cdots \big) + \cdots \big) \\ = \int d^{2}z \, \Big(G_{\mu\nu} \Big(\partial X^{\mu} \bar{\partial} X^{\nu} + \tilde{\psi}^{\nu} \partial \tilde{\psi}^{\mu} - (\bar{\partial} \psi^{\nu}) \psi^{\mu} + F^{\nu} F^{\mu} \Big) \\ + \tilde{\psi}^{\nu} \psi^{\mu} \Big(F^{\lambda} G_{\mu\nu,\lambda} + \psi^{\rho} \tilde{\psi}^{\sigma} G_{\mu\nu,\rho\sigma} \Big) \\ - G_{\mu\nu,\lambda} \Big(\psi^{\lambda} \big(\psi^{\mu} \bar{\partial} X^{\nu} - \tilde{\psi}^{\nu} F^{\mu} \big) + \tilde{\psi}^{\lambda} \big(\tilde{\psi}^{\nu} \partial X^{\mu} + \psi^{\mu} F^{\nu} \big) \Big) \Big)$$
(34)

Similar result holds for the *B* contribution S_B . We see that there is no ∂F term in the action, hence *F* is not dynamical and can be integrated out; we have:

$$0 = \delta_F S = \delta_F (S_G + S_B), \tag{35}$$

$$4\pi \,\delta S_G = \int d^2 z \left(2G_{\mu\nu} F^{\mu} \,\delta F^{\nu} + G_{\mu\nu,\lambda} \left(\tilde{\psi}^{\nu} \psi^{\mu} \,\delta F^{\lambda} - \tilde{\psi}^{\nu} \psi^{\lambda} \,\delta F^{\mu} - \tilde{\psi}^{\lambda} \psi^{\mu} \,\delta F^{\nu} \right) \right) = \int d^2 z \left(2F_{\lambda} + \left(G_{\mu\nu,\lambda} - G_{\lambda\mu,\nu} - G_{\lambda\nu,\mu} \right) \tilde{\psi}^{\nu} \psi^{\mu} \right) \delta F^{\lambda} = \int d^2 z \left(2F_{\lambda} - 2\Gamma_{\lambda\mu\nu} \tilde{\psi}^{\nu} \psi^{\mu} \right) \delta F^{\lambda}, \tag{36}$$

$$4\pi \,\delta S_B = \int d^2 z \left(0 + \left(B_{\mu\nu,\lambda} + B_{\lambda\mu,\nu} + B_{\nu\lambda,\mu} \right) \tilde{\psi}^{\nu} \psi^{\mu} \right) \delta F^{\lambda} = \int d^2 z \,H_{\lambda\mu\nu} \tilde{\psi}^{\nu} \psi^{\mu} \,\delta F^{\lambda}, \tag{36}$$

$$\delta S_B = \int d^2 z \left(0 + \left(B_{\mu\nu,\lambda} + B_{\lambda\mu,\nu} + B_{\nu\lambda,\mu} \right) \tilde{\psi}^{\nu} \psi^{\mu} \right) \delta F^{\lambda} = \int d^2 z \, H_{\lambda\mu\nu} \tilde{\psi}^{\nu} \psi^{\mu} \, \delta F^{\lambda} \,,$$

$$F_{\lambda} = \left(\Gamma_{\lambda\mu\nu} - \frac{1}{2} H_{\lambda\mu\nu} \right) \tilde{\psi}^{\nu} \psi^{\mu} \,, \tag{37}$$

$$F^{\lambda} = \left(\Gamma^{\lambda}_{\mu\nu} - \frac{1}{2}H^{\lambda}_{\mu\nu}\right)\tilde{\psi}^{\nu}\psi^{\mu},\tag{38}$$

Here we've used the (anti-)symmetry of $G_{\mu\nu}$ and $B_{\mu\nu}$, and we adopt the convention that the Levi-Civita connection $\Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\ \ \mu\nu} = G^{\lambda\lambda'}\Gamma_{\lambda'\mu\nu}$; similar holds for $B_{\mu\nu}$ and $H^{\lambda}_{\mu\nu}$.

Substitute F_{λ} into S, collect the $\psi^0, \psi^2, \tilde{\psi}^2$ and $\psi^2 \tilde{\psi}^2$ terms respectively, and we have:

$$4\pi S = \int d^2 z \left((G_{\mu\nu} + B_{\mu\nu}) \partial X^{\mu} \bar{\partial} X^{\nu} + (G_{\mu\nu} + B_{\mu\nu}) \left(\tilde{\psi}^{\mu} \partial \tilde{\psi}^{\nu} - (\bar{\partial} \psi^{\mu}) \psi^{\nu} \right) - (G_{\mu\nu,\lambda} + B_{\mu\nu,\lambda}) \left(\psi^{\lambda} \psi^{\mu} \bar{\partial} X^{\nu} + \tilde{\psi}^{\lambda} \tilde{\psi}^{\nu} \partial X^{\mu} \right) + G_{\mu\nu} F^{\mu} F^{\nu} - 2 \left(\Gamma_{\lambda\mu\nu} - \frac{1}{2} H_{\lambda\mu\nu} \right) \tilde{\psi}^{\nu} \psi^{\mu} F^{\lambda} + (G_{\mu\nu,\rho\sigma} + B_{\mu\nu,\rho\sigma}) \tilde{\psi}^{\nu} \psi^{\mu} \psi^{\rho} \tilde{\psi}^{\sigma} \right)$$

$$= \int d^2 z \left((G_{\mu\nu} + B_{\mu\nu}) \partial X^{\mu} \bar{\partial} X^{\nu} \right)$$
(39)

$$\int d^{\lambda} \left((G_{\mu\nu} + G_{\mu\nu}) \partial t \partial t \right) + G_{\mu\nu} \left(\tilde{\psi}^{\mu} \partial \tilde{\psi}^{\nu} + \psi^{\mu} \bar{\partial} \psi^{\nu} \right) - (G_{\mu\nu,\lambda} + B_{\mu\nu,\lambda}) \left(\psi^{\lambda} \psi^{\mu} \bar{\partial} X^{\nu} + \tilde{\psi}^{\lambda} \tilde{\psi}^{\nu} \partial X^{\mu} \right) - F_{\lambda} F^{\lambda} + (G_{\mu\nu,\rho\sigma} + B_{\mu\nu,\rho\sigma}) \psi^{\mu} \psi^{\rho} \tilde{\psi}^{\nu} \tilde{\psi}^{\sigma} \right)$$

Here we've performed some integration by parts to clean up the result. Note that some terms involving $B_{\mu\nu}$ vanish conveniently (up to integration by parts) due to anti-symmetricity.

The $\psi^2, \tilde{\psi}^2$ terms in the integrand can be further simplified as follows:

$$\mathcal{L}_{\psi^{2}} = G_{\mu\nu}\psi^{\mu}\bar{\partial}\psi^{\nu} - (G_{\mu\nu,\lambda} + B_{\mu\nu,\lambda})\psi^{\lambda}\psi^{\mu}\bar{\partial}X^{\nu}
= G_{\mu\nu}\psi^{\mu}\bar{\partial}\psi^{\nu} - (G_{\mu[\nu,\lambda]} + B_{\mu[\nu,\lambda]})\psi^{\lambda}\psi^{\mu}\bar{\partial}X^{\nu}
= G_{\mu\nu}\psi^{\mu}\bar{\partial}\psi^{\nu} - \left(-\Gamma_{\lambda\mu\nu} + \frac{1}{2}H_{\lambda\mu\nu}\right)\psi^{\lambda}\psi^{\mu}\bar{\partial}X^{\nu}
= G_{\mu\nu}\psi^{\mu}\left(\bar{\partial}\psi^{\nu} + \left(\Gamma^{\nu}_{\rho\sigma} - \frac{1}{2}H^{\nu}_{\rho\sigma}\right)\psi^{\rho}\bar{\partial}X^{\sigma}\right)
= G_{\mu\nu}\psi^{\mu}\left(\bar{\partial}\psi^{\nu} + \left(\Gamma^{\nu}_{\rho\sigma} + \frac{1}{2}H^{\nu}_{\rho\sigma}\right)\psi^{\sigma}\bar{\partial}X^{\rho}\right) = G_{\mu\nu}\psi^{\mu}\bar{D}\psi^{\nu},$$

$$\mathcal{L}_{\tilde{\psi}^{2}} = G_{\mu\nu}\tilde{\psi}^{\mu}\bar{\partial}\tilde{\psi}^{\nu} - (G_{\mu\nu,\lambda} + B_{\mu\nu,\lambda})\tilde{\psi}^{\lambda}\tilde{\psi}^{\nu}\partial X^{\mu}
= G_{\mu\nu}\tilde{\psi}^{\mu}\left(\bar{\partial}\tilde{\psi}^{\nu} + \left(\Gamma^{\nu}_{\rho\sigma} - \frac{1}{2}H^{\nu}_{\rho\sigma}\right)\tilde{\psi}^{\sigma}\partial X^{\rho}\right) = G_{\mu\nu}\tilde{\psi}^{\mu}D\tilde{\psi}^{\nu},$$

For the $\psi^2 \tilde{\psi}^2$ term, recall that $R_{\mu\nu\rho\sigma} = e_\mu [\nabla_\rho, \nabla_\sigma] e_\nu, \nabla_\sigma e_\nu = e_\lambda \Gamma^\lambda_{\sigma\nu}$, and we have:

$$\mathcal{L}_{\psi^{2}\tilde{\psi}^{2}} = \psi^{\mu}\psi^{\nu}\tilde{\psi}^{\rho}\tilde{\psi}^{\sigma}\left(G_{\mu\rho,\nu\sigma} + B_{\mu\rho,\nu\sigma} + \left(\Gamma_{\lambda\mu\rho} - \frac{1}{2}H_{\lambda\mu\rho}\right)\left(\Gamma_{\nu\sigma}^{\lambda} - \frac{1}{2}H_{\nu\sigma}^{\lambda}\right)\right) \\
= \psi^{\mu}\psi^{\nu}\tilde{\psi}^{\rho}\tilde{\psi}^{\sigma}\left(G_{\mu\rho,\nu\sigma} + \Gamma_{\lambda\mu\rho}\Gamma_{\nu\sigma}^{\lambda} + B_{\mu\rho,\nu\sigma} - \frac{1}{2}\left(\Gamma_{\mu\rho}^{\lambda}H_{\lambda\nu\sigma} + \Gamma_{\nu\sigma}^{\lambda}H_{\lambda\mu\rho}\right) + \frac{1}{4}H_{\mu\rho}^{\lambda}H_{\lambda\nu\sigma}\right) \quad (41) \\
= \mathcal{L}_{G} + \mathcal{L}_{B} + \frac{1}{4}H_{\mu\rho}^{\lambda}H_{\lambda\nu\sigma}\psi^{\mu}\psi^{\nu}\tilde{\psi}^{\rho}\tilde{\psi}^{\sigma}, \\
\mathcal{L}_{G} = \psi^{\mu}\psi^{\nu}\tilde{\psi}^{\rho}\tilde{\psi}^{\sigma}\left(G_{\mu\rho,\nu\sigma} + \Gamma_{\lambda\mu\rho}\Gamma_{\nu\sigma}^{\lambda}\right) \\
= \psi^{[\mu}\psi^{\nu]}\tilde{\psi}^{[\rho}\tilde{\psi}^{\sigma]}\left(G_{\mu\rho,\nu\sigma} + \Gamma_{\lambda\mu\rho}\Gamma_{\nu\sigma}^{\lambda}\right) \\
= \frac{1}{2}\psi^{\mu}\psi^{\nu}\tilde{\psi}^{\rho}\tilde{\psi}^{\sigma}\left\{\left(\frac{1}{2}\left(G_{\mu\rho,\nu\sigma} - G_{\mu\sigma,\nu\rho}\right) + \Gamma_{\lambda\mu\rho}\Gamma_{\nu\sigma}^{\lambda}\right) - \left(\cdots\right)_{\rho\leftrightarrow\sigma}\right\} \\
= \frac{1}{2}R_{\mu\nu\rho\sigma}\psi^{\mu}\psi^{\nu}\tilde{\psi}^{\rho}\tilde{\psi}^{\sigma}, \\
\mathcal{L}_{B} = \frac{1}{2}\nabla_{\rho}H_{\mu\nu\sigma}\psi^{\mu}\psi^{\nu}\tilde{\psi}^{\rho}\tilde{\psi}^{\sigma},$$

Therefore, the total action is:

$$S = \frac{1}{4\pi} \int d^2 z \left((G_{\mu\nu} + B_{\mu\nu}) \partial X^{\mu} \bar{\partial} X^{\nu} + G_{\mu\nu} \left(\tilde{\psi}^{\mu} \mathcal{D} \tilde{\psi}^{\nu} + \psi^{\mu} \bar{\mathcal{D}} \psi^{\nu} \right) + \left(\frac{1}{2} R_{\mu\nu\rho\sigma} + \frac{1}{2} \nabla_{\rho} H_{\mu\nu\sigma} + \frac{1}{4} H^{\lambda}_{\mu\rho} H_{\lambda\nu\sigma} \right) \psi^{\mu} \psi^{\nu} \tilde{\psi}^{\rho} \tilde{\psi}^{\sigma} \right)$$

$$(43)$$

4 Mixed Anomaly Between Diffeomorphism and Axial U(1) Symmetry:

(a) Calculations of such anomaly is (schematically) similar to the usual axial anomaly; instead of the A_{μ} legs, we now have two $h_{\mu\nu}$ legs in the triangular diagram.

Again we chose the Pauli–Villars regularization with a regulator field ψ' of mass $M \to \infty$. The $\partial^{\mu} J^{A}_{\mu}$ insertion is then reduced to:

$$\partial^{\mu}J^{A}_{\mu} = \partial_{\mu} \left(i\bar{\psi}'\gamma^{\mu}\gamma^{5}\psi' \right) = i\bar{\psi}'(2M\gamma^{5})\psi' \tag{44}$$

The fermion-fermion-graviton vertex is given by $h_{\mu\nu}T^{\mu\nu}$, and (up to integration by parts) we have:

$$T^{\mu\nu} = \frac{i}{2} \bar{\psi} \gamma^{(\mu} \overleftrightarrow{\partial}^{\nu)} \psi \sim \frac{i}{2} \bar{\psi} \gamma^{(\mu} (-2\partial^{\nu)}) \psi = -i \bar{\psi} \gamma^{(\mu} \partial^{\nu)} \psi, \tag{45}$$

$$h_{\mu\nu}T^{\mu\nu} = \bar{\psi} \left(-ih_{\mu\nu}\gamma^{(\mu}\partial^{\nu)} \right) \psi, \tag{46}$$

This is very similar to the A_{μ} coupling, except that there is an extra derivative ∂^{ν} . Denote the polarization of graviton as $\varepsilon_{\mu\nu}$, then in momentum space the interaction vertex $\sim \epsilon_{\mu\nu}\gamma^{\mu}(k_1^{\nu}+k_2^{\nu})$, and we have:

$$\begin{split} \langle \partial^{\mu} J_{\mu}^{A} \rangle_{h} &\sim \frac{1}{2!} \times 2 \int \frac{\mathrm{d}^{4} k}{(2\pi)^{4}} \operatorname{Tr} \left(2M\gamma_{5} \cdot \frac{\not{k} + M}{k^{2} + M^{2}} \cdot \underline{\varepsilon_{1}}(2k + p_{1}) \cdot \frac{\not{k} + \not{p}_{1} + M}{(k + p_{1})^{2} + M^{2}} \cdot \underline{\varepsilon_{2}}(2k + 2p_{1} + p_{2}) \cdot \frac{\not{k} + \not{p}_{1} + \not{p}_{2} + M}{(k + p_{1})^{2} + M^{2}} \right) \\ &\sim \int \frac{\mathrm{d}^{4} k}{(2\pi)^{4}} 2M^{2} (4\epsilon_{\mu\nu\rho\sigma}) \varepsilon_{1}^{\mu\mu'} (2k + p_{1})_{\mu'} p_{1}^{\nu} \varepsilon_{2}^{\rho\rho'} (2k + 2p_{1} + p_{2})_{\rho'} p_{2}^{\sigma} \left(\frac{1}{k^{2} + M^{2}} \cdots \right) \\ &\sim 8M^{2} \epsilon_{\mu\nu\rho\sigma} p_{1}^{\nu} p_{2}^{\sigma} \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} \int \frac{\mathrm{d}^{4} k}{(2\pi)^{4}} \frac{(2k + p_{1})_{\mu'} (2k + 2p_{1} + p_{2})_{\rho'}}{((k + p_{1})^{2} + M^{2}) ((k + p_{1} + p_{2})^{2} + M^{2})} \\ &\sim 8M^{2} \epsilon_{\mu\nu\rho\sigma} p_{1}^{\nu} p_{2}^{\sigma} \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} \int \frac{\mathrm{d}^{4} k}{(2\pi)^{4}} \frac{4k_{\mu'} k_{\rho'} + p_{1,\mu'} p_{2,\rho'}}{(k^{2} + M^{2})^{3}} \end{split}$$

$$\tag{47}$$

There are, in fact, 2 diagrams accounting for this amplitude with $1 \leftrightarrow 2$ symmetry; here we simply take one contribution with an additional factor of 2, and imply $1 \leftrightarrow 2$ symmetrization in the above expressions.

Note that due to the additional $k_{\mu'}k_{\rho'}$ the integral is no longer finite but logarithmic divergent: $\int^{\Lambda} d^4k \frac{k^2}{k^6} \sim \ln \Lambda$. More specifically⁸, we have:

$$\langle \partial^{\mu} J_{\mu}^{A} \rangle_{h} \sim 8M^{2} \epsilon_{\mu\nu\rho\sigma} p_{1}^{\nu} p_{2}^{\sigma} \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} \frac{\text{Vol} S^{3}}{(2\pi)^{4}} \int \left(\frac{4k_{\mu'}k_{\rho'}k^{3} \, dk}{(k^{2} + M^{2})^{3}} + p_{1,\mu'}p_{2,\rho'} \frac{k^{3} \, dk}{(k^{2} + M^{2})^{3}} \right) \sim 8M^{2} \epsilon_{\mu\nu\rho\sigma} p_{1}^{\nu} p_{2}^{\sigma} \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} \frac{2\pi^{2}}{(2\pi)^{4}} \int \left(\delta_{\mu'\rho'} \frac{k^{5} \, dk}{(k^{2} + M^{2})^{3}} + p_{1,\mu'}p_{2,\rho'} \frac{k^{3} \, dk}{(k^{2} + M^{2})^{3}} \right) \sim 8M^{2} \epsilon_{\mu\nu\rho\sigma} p_{1}^{\nu} p_{2}^{\sigma} \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} \frac{1}{8\pi^{2}} \left(\delta_{\mu'\rho'} \frac{1}{2} \ln \frac{\Lambda^{2}}{M^{2}} + p_{1,\mu'}p_{2,\rho'} \frac{1}{4M^{2}} \right) \sim \frac{1}{4\pi^{2}} \epsilon_{\mu\nu\rho\sigma} p_{1}^{\nu} p_{2}^{\sigma} \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} \left(2\delta_{\mu'\rho'} M^{2} \ln \frac{\Lambda^{2}}{M^{2}} + p_{1,\mu'}p_{2,\rho'} \right)$$

The second term is very much similar to the axial anomaly result, while the first term diverges.

However, we believe that the divergent term must be canceled by other diagrams; otherwise, it will contribute a $p^{\nu}p^{\sigma} \,\delta_{\mu'\rho'} \varepsilon_1^{\mu\mu'} \varepsilon_2^{\rho\rho'} = p^{\nu}p^{\sigma}(\varepsilon_1)^{\mu}{}_{\alpha}(\varepsilon_2)^{\rho\alpha} \sim (\partial h)^2$ term in the final result, which is not diff-invariant. The second term, on the other hand, is diff-invariant:

$$R_{\mu\nu\alpha\beta} = p_{\beta} \, p_{[\nu} \, \varepsilon_{\mu]\alpha} - p_{\alpha} \, p_{[\nu} \, \varepsilon_{\mu]\beta}, \tag{49}$$

⁸ References:

- A. Zee, QFT in a Nutshellz;
- arXiv:0802.0634;
- Wikipedia: Common integrals in quantum field theory.

[•] David Tong, Gauge Theory;

$$\langle \partial^{\mu} J^{A}_{\mu} \rangle_{h} \sim \frac{1}{4\pi^{2}} \epsilon_{\mu\nu\rho\sigma} \left(\varepsilon^{\mu\mu'} p_{1,\mu'} p_{1}^{\nu} \right) \left(\varepsilon^{\rho\rho'} p_{2,\rho'} p_{2}^{\sigma} \right) \sim \frac{1}{4\pi^{2}} \epsilon_{\mu\nu\rho\sigma} \frac{1}{4! \times 2 \times 2} \times \frac{1}{2} R_{\mu\nu\alpha\beta} R_{\rho\sigma}{}^{\alpha\beta}$$

$$\sim \frac{1}{768\pi^{2}} \epsilon_{\mu\nu\rho\sigma} R_{\mu\nu\alpha\beta} R_{\rho\sigma}{}^{\alpha\beta}$$

$$(50)$$

(b) The next order contribution would come from the covariant derivative⁹:

$$\nabla_{\!\mu}\psi = \partial_{\mu}\psi + \frac{1}{2}\,\omega_{\mu}{}^{ab}\sigma_{ab}\psi \tag{51}$$

Where $\omega_{\mu}{}^{ab}$ is the spin connections, and $\sigma_{ab} = \frac{1}{4}[\gamma_a, \gamma_b]$; when linearized this contributes to the following interaction vertex:

$$\mathcal{L}' = -\frac{i}{4} h_{\lambda}{}^{\alpha} \partial_{\mu} h_{\nu\alpha} \,\bar{\psi} \,\Gamma^{\mu\lambda\nu} \psi, \quad \Gamma^{\mu\lambda\nu} = \gamma^{[\mu} \gamma^{\lambda} \gamma^{\nu]}, \tag{52}$$

Feynman rule:
$$-\frac{i}{4}\Gamma^{\mu\lambda\nu}(p_1-p_2)_{\mu}(\varepsilon_1)_{\lambda}^{\ \alpha}(\varepsilon_2)_{\nu\alpha},$$
 (53)

We see a $(\varepsilon_1)_{\lambda}^{\alpha}(\varepsilon_2)_{\nu\alpha}$ factor, much similar to the factor in the divergent term in (a). Note that this vertex already contains 3 γ -matrices; by joining it with the anomalous vertex $\partial_{\mu}j_{A}^{\mu}$, we obtain a simple 1-loop "seagull" diagram (with graviton wings) :

$$\langle \partial^{\mu} J_{\mu}^{A} \rangle_{h}^{\prime} \sim 2 \int \frac{\mathrm{d}^{4} k}{(2\pi)^{4}} \operatorname{Tr} \left(2M\gamma_{5} \cdot \frac{\not{k} + M}{k^{2} + M^{2}} \cdot \left(-\frac{1}{4} \right) \underbrace{\varepsilon_{1} \varepsilon_{2} (p_{1} - p_{2})}_{(k+p_{1}+p_{2})^{2} + M^{2}} \right)$$

$$\sim -\int \frac{\mathrm{d}^{4} k}{(2\pi)^{4}} M^{2} (4\epsilon_{\mu\nu\rho\sigma}) \, \delta_{\mu'\rho'} \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} (p_{1} - p_{2})^{\nu} (p_{1} + p_{2})^{\sigma} \left(\frac{1}{k^{2} + M^{2}} \cdots \right)$$

$$\sim -4M^{2} \epsilon_{\mu\nu\rho\sigma} \left(2p_{1}^{\nu} p_{2}^{\sigma} \right) \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} \int \frac{\mathrm{d}^{4} k}{(2\pi)^{4}} \frac{\delta_{\mu'\rho'}}{(k^{2} + M^{2})^{2}}$$

$$\sim -8M^{2} \epsilon_{\mu\nu\rho\sigma} p_{1}^{\nu} p_{2}^{\sigma} \varepsilon_{1}^{\mu\mu'} \varepsilon_{2}^{\rho\rho'} \frac{1}{8\pi^{2}} \left(\delta_{\mu'\rho'} \frac{1}{2} \ln \frac{\Lambda^{2}}{M^{2}} \right)$$

$$(54)$$

Compare with the result in (a), and we see that the divergences cancel each other out precisely.

(c) For an anomalous vertex with hypercharge Y, there will be an additional Y factor in the front of $\langle \partial_{\mu} J_A^{\mu} \rangle$; summing over a family of matter gives the total anomaly¹⁰:

$$\langle \partial_{\mu} J_{A}^{\mu} \rangle \propto \sum \operatorname{Tr} T_{a} T_{b} Y \propto \delta_{ab} \sum Y$$
 (55)

When the summation goes over all states in a complete generation, we have $\sum Y = 0$, i.e. the anomaly cancels.

⁹ Reference: Alvarez-Gaume & Witten, *Gravitational Anomalies*.

¹⁰ Reference: *Tong*, and Wikipedia: *Anomaly (physics) # Anomaly cancellation*.