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Strings on Curved Space:
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We want to verify the coefficient of o’ H? term in Bfw for convenience we’ve omitted non-related

terms in the above expressions.
Note that at O(a’) such term does not depend on the metric G,,,,, and it depends only on the
field strength H = dB, not the potential B, hence it’s safe to assume:

G =M, B = 3HWpX H = const, (4)
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We consider small perturbation away from the classical saddle: X = X+ &, then the 1-loop effective
action is obtained by integrating over O(£?) terms in the perturbed action':
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Here we’ve used the anti-symmetric properties of H,,,, € and ignored any total derivative after in-
tegration by parts. This term introduces a cubic interaction vertex in the free background; therefore,

'™ can be expressed in the following diagram?:
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L Reference: Prof. Xi Yin’s String Notes, see also arXiv:0812.4408.
2 References:

o David Tong, String Theory;

e Callan & Thorlacius, Sigma Models and String Theory;

e Timo Weigand, Introduction to String Theory.


https://arxiv.org/abs/0812.4408
https://www.damtp.cam.ac.uk/user/tong/string.html
https://www.damtp.cam.ac.uk/user/tong/string/sigma.pdf
https://www.thphys.uni-heidelberg.de/~{}weigand/Strings15-16/Strings.pdf

2 2
271 o N v [ 2 D297 —ppP
= 2!<a’> (—2) H o H, 0, X} 0 X§ /d p7p4 9)
2

_ 2 1 Aw w v 1 ab 2 1
= 2!<—2) H ) H, "0, Xy 0p X (29 )/d pﬁ (10)

2 1 ? 1 Aw v _ab 2 1
= 2'<2> <2)H/L>\UJHV 6(1X6L 8bXO g /d p? (11)

1 1

- gﬂwﬂng“baaxg XY / dQPF (12)

I\2
Here the (5)2 coeflicient comes from the vertices, while (—%) comes from the propagators. The

p®p® integral provides an additional (%) factor. The overall normalization is chosen to match the

'Ry, coefficient in ﬁgj C T, , which is §; x (—3) x 1 = —1. Therefore, we have:
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Classical Solutions of 11D SUGRA: Following the convention of Polchinski, we have

bosonic action:
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Here G = dC': a 4-form field. In components, the numerical coefficients would be % — 2;41 = 4—18,

1 1 _ 1
and § = gxarcarca = 20736

Variation of the action yields the EOMs of our theory?; Note that:
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52% is easier to compute in components; note that the C A G A G term does not depend on g"”,
therefore it does not contribute to the EOM. We have the usual Einstein’s equations:
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3 Reference: arXiv:hep-th/9912164. I would like to thank Lucy Smith for many helpful discussions.


https://arxiv.org/abs/hep-th/9912164

On the other hand, g—g is best carried out using differential forms:
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(a) We hope to find a spacetime solution which is mazimally symmetric in some directions;
assume that these directions form a d-dimensional sub-manifold M, with:
Coordinates: x“’, peAcion,. .- 11},

. / (21)
Induced metric: =glm,

The entire spacetime is then a direct product: My x lel_d. For M, to be maximally symmetric,
we expect that k27, = —Ag:m,,7 i.e. the G-field serves as a cosmological constant A. By staring at
(18) we find that this can be achieved with?:
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Matter EOM is trivially satisfied due to anti-symmetricity. We see that the other component Mv7 is
also maximally symmetric, but with an opposite sign in its cosmological constant.

The field equations in M, and MV7 are both of the form R,, o g,,. For seng’ = —1 ie.
Lorentzian signature, the solution is flat, AdS or dS, depending on the sign of A; for sgng’ = —1,
the solution is flat, spherical or hyperbolic. Therefore, we have:

a2

T30 Ma=AdSsy, M, =57
" (26)

2 o~
seng' = +1, Agr=TF——r My=S5% M;=AdSe,

4K2’

sgng' = -1, MAy7=+=

4 This is in fact the famous Freund—Robin ansatz; see Wikipedia: Freund — Rubin compactification, and also the
original paper: Freund & Robin, Dynamics of Dimensional Reduction, 1980.


https://en.wikipedia.org/wiki/Freund%E2%80%93Rubin_compactification
https://inspirehep.net/literature/154579
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(b) Global supersymmetries of a theory with the above AdS,/7 x %" background are given by
the solutions of:

0= 6,9" = D'n(x), n: spinor, (27)
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Note that we’ve replaced the G indices with My indices, since G vanish in Mv7 directions; due to anti-
symmetricity, the G-term can be reduced to simple I'* multiplications according to the u-direction®.
Furthermore, the spin connection in V# is also block diagonalized, same as g,,; hence there is a
natural separation of variable®:

n=n'(z")n"("), Dwn' =0, Dyn" =0, (29)
N’? /'7/7 x, ~ M47 /"L//7 /'7//7 x/I ~ 'A/\/l/,?? (30)

Due to the presence of an additional I', D, = 0 has only 4 linearly independent solutions
labeled by g/, while D,»n" = 0 is Spin(8) (or Spin(7,1), depending on the signature) invariant, and
has % = 28 linearly independent solutions”. Hence the total number of SUSYs is 4 4 28 = 32, for
AdS,)7 x 54/ background.

SUSY Sigma Models via Superspace:
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5 Reference for I'-matrices and spinors: Polchinski Vol. II, Appendix B. I'm a bit confused about all the complicated
conventions, therefore the coefficients might be off by some factors...

See arXiv:hep-th/9912164 for more detailed discussions.

Reference: Achilleas Passias, Aspects of Supergravity in Eleven Dimensions.


https://arxiv.org/abs/hep-th/9912164

Note that [ d?0 = 9y0p, hence we need only focus on the #6 term in the Lagrangian:
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Similar result holds for the B contribution Sp. We see that there is no JF term in the action, hence
F' is not dynamical and can be integrated out; we have:

0=06pS = 6r(Sc + Sp), (35)
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Here we’ve used the (anti-)symmetry of G, and B,,, and we adopt the convention that the Levi-

Civita connection Fﬁy = F’\W = GA’\,F,VW; similar holds for By, and Hﬁ‘y.

Substitute Fy into S, collect the 40,42, 9% and 12?2 terms respectively, and we have:
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Here we’ve performed some integration by parts to clean up the result. Note that some terms
involving B,,,, vanish conveniently (up to integration by parts) due to anti-symmetricity.



The 2, 4? terms in the integrand can be further simplified as follows:
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For the 24?2 term, recall that Ruvpe =€,V ,Vole,, Voe, = exI'* | and we have:
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Therefore, the total action is:
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Mixed Anomaly Between Diffeomorphism and Axial U(1) Symmetry:

(a) Calculations of such anomaly is (schematically) similar to the usual axial anomaly; instead
of the A, legs, we now have two h,, legs in the triangular diagram.

Again we chose the Pauli-Villars regularization with a regulator field 1)’ of mass M — oco. The
5"&]@4 insertion is then reduced to:

M I = 0, (i vy ) = i (2M~P) (44)
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The fermion-fermion-graviton vertex is given by h,,, T*”, and (up to integration by parts) we have:
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By T = (=i 07 ), (46)

This is very similar to the A, coupling, except that there is an extra derivative 0. Denote the
polarization of graviton as €,,, then in momentum space the interaction vertex ~ €., v*(k} + k%),
and we have:
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There are, in fact, 2 diagrams accounting for this amplitude with 1 < 2 symmetry; here we simply
take one contribution with an additional factor of 2, and imply 1 <+ 2 symmetrization in the above

expressions.

Note that due to the additional &, k, the integral is no longer finite but logarithmic divergent:
i A gtk i—z ~ In A. More specifically®, we have:
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The second term is very much similar to the axial anomaly result, while the first term diverges.

However, we believe that the divergent term must be canceled by other diagrams; otherwise, it
will contribute a p”p? 8,y el™ b’ = p’p? (e1)", (€2)P* ~ (Oh)? term in the final result, which is not
diff-invariant. The second term, on the other hand, is diff-invariant:

Ruvap = P8Pl Eula — PaPly €418 (49)

8 References:

e David Tong, Gauge Theory;
o A. Zee, QFT in a Nutshellz;
e arXiv:0802.0634;

o Wikipedia: Common integrals in quantum field theory.


https://www.damtp.cam.ac.uk/user/tong/gaugetheory.html
https://arxiv.org/abs/0802.0634
https://en.wikipedia.org/wiki/Common_integrals_in_quantum_field_theory
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(b) The next order contribution would come from the covariant derivative®:

1
Vuw = au"/’ + 5 wuabgabw (51)

Where wﬂ‘“’ is the spin connections, and oy, = i[fya,*yb]; when linearized this contributes to the
following interaction vertex:
i _
[ = _Z h)\aaﬂhya wl—\;tz\u,(/}7 Fuz\u — ,y[,u,yk,yu]) (52)

i
Feynman rule: — 1 TP (py — p2)y (61)2%(£2) vas (53)
We see a (€1),%(€2)va factor, much similar to the factor in the divergent term in (a). Note that

this vertex already contains 3 y-matrices; by joining it with the anomalous vertex d,,j%, we obtain a
simple 1-loop “seagull” diagram (with graviton wings) :
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Compare with the result in (a), and we see that the divergences cancel each other out precisely.

(¢) For an anomalous vertex with hypercharge Y, there will be an additional ¥ factor in the
front of (9,J'}); summing over a family of matter gives the total anomaly!:

(0uTy) < Y TrT,TY o 6ap » Y (55)

When the summation goes over all states in a complete generation, we have Y Y = 0, i.e. the anomaly
cancels.

9 Reference: Alvarez-Gaume & Witten, Gravitational Anomalies.

10 Reference: Tong, and Wikipedia: Anomaly (physics) # Anomaly cancellation.
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