Bryan

Compiled @ 2023/09/14

1 BRST Quantization of Bosonic String:

$$S = S^X + S^{bc},\tag{1}$$

$$S^{X} = \frac{1}{2\pi\alpha'} \int d^{2}z \,\partial X^{\mu} \bar{\partial} X_{\mu}, \quad S^{bc} = \frac{1}{2\pi} \int d^{2}z \left(b \,\bar{\partial} c + \tilde{b} \,\partial \tilde{c} \right) \tag{2}$$

This is the gauge fixed action. The corresponding BRST transformation is listed in *Polchinski*; for each of the subsystems, we have its energy-momentum:

$$T^{X}(z) = -\frac{1}{\alpha'} : \partial X^{\mu} \partial X_{\mu} : , \quad \tilde{T}^{X}(\bar{z}) = -\frac{1}{\alpha'} : \bar{\partial} X^{\mu} \bar{\partial} X_{\mu} : , \qquad (3)$$

$$T^{bc}(z) = :(\partial b) c: -2 \,\partial(:bc:), \quad \tilde{T}^{bc}(\bar{z}) = :(\bar{\partial}\tilde{b})\,\tilde{c}: -2\,\bar{\partial}(:\tilde{b}\tilde{c}:), \tag{4}$$

(a) To get the energy-momentum of S, let's visit each of the subsystems respectively; first, BRST transformation of X is given by:

$$\delta X^{\mu} = i\epsilon \left(c\partial + \tilde{c}\bar{\partial}\right) X^{\mu} \tag{5}$$

Compared with the conformal transformation¹: $\delta X^{\mu} = -\epsilon \left(v\partial + \tilde{v}\bar{\partial}\right)X^{\mu}$, we see that they are in fact identical under the equivalence $-\epsilon v \sim i\epsilon c$, $-\epsilon \tilde{v} \sim i\epsilon \tilde{c}$, hence we can simply follow the derivation of conformal current and write down δS^X 's contribution to the conserved current:

$$j^X = c(z) T^X(z) \tag{6}$$

The transformation of b, c is less obvious; for holomorphic current, we need only focus on the holomorphic part of S^{bc} ; on-shell variation yields:

$$0 = \delta S^{bc} = \left(\frac{1}{2\pi} \int d^2 z \left(-\bar{\partial}c \ \delta b - \bar{\partial}b \ \delta c\right)\right)_{=0} + \frac{1}{2\pi} \int d^2 z \ \bar{\partial}(b \ \delta c) = \frac{1}{2\pi} \int d^2 z \ \bar{\partial}\epsilon \left(-ibc \ \partial c\right) \tag{7}$$

Here we've plugged in $\delta c = i\epsilon(z, \bar{z}) c\partial c$, and we have moved $\bar{\partial}\epsilon$ to the beginning of the expression, while respecting the anti-commuting nature of ϵ . With a conventional *i* coefficient (which agrees with the convention of j^X), we have bc's contribution to the conserved current:

$$j^{bc} = i\left(-ibc\,\partial c\right) = bc\,\partial c\tag{8}$$

Note that j^{bc} is, in fact, related to the energy-momentum (at least classically):

$$\frac{1}{2}cT^{bc} = \frac{1}{2}c(\partial b)c - c\partial(bc) = -c\partial(bc) = -cb\partial c = bc\partial c = j^{bc}$$
(9)

Hence we have the classical BRST current:

$$j(z) = c(z) \left(T^X + \frac{1}{2} T^{bc} \right)$$
(10)

 $^{^{1}}$ We follow the convention of *Polchinski* unless otherwise stated.

For a quantum version, redefine j(z) with normal ordering², and we have:

$$T(z) j(0) \sim T^{X}(z) T^{X}(0) c(0) + T^{bc}(z) c T^{X}(0) + T^{bc}(z) : bc \,\partial c :_{(0)}, \tag{11}$$

where
$$T^X(z) T^X(0) c(0) \sim \left(\frac{D}{2z^4} + \frac{2}{z^2} T^X(0) + \frac{1}{z} \partial T^X(0)\right) c(0),$$
 (12)

Here we've used the fact that X and b, c is de-coupled in the gauge-fixed action, hence their OPE is trivial. Also, we've expanded the first term using TT OPE of the free boson. Additionally, note that c(z) is primary with weight (-1, 0), we have:

$$T^{bc}(z) cT^{X}(0) \sim \left\{ T^{bc}(z) c(0) \right\} T^{X}(0) \sim \left(\frac{-1}{z^{2}} c(0) + \frac{1}{z} \partial c(0) \right) T^{X}(0),$$
(13)

The last term in (11) can be brute-forced as follows:

$$T^{bc}(z) : bc \,\partial c :_{(0)} = \left(:(\partial b) \,c : -2 \,\partial (:bc:) \right)_{(z)} : bc \,\partial c :_{(0)}, \tag{14}$$

$$: (\partial b) c:_{(z)} : bc \partial c:_{(0)} \sim : (\partial b) c_{(z)} bc \partial c_{(0)} : + : (\partial b) c_{(z)} bc \partial c_{(0)} : + : (\partial b) c_{(z)} bc \partial c_{(0)} : + : (\partial b) c_{(z)} bc \partial c_{(0)} : + : (\partial b) c_{(z)} bc \partial c_{(0)} : \sim \frac{-1}{z^2} (+1) : c_{(z)} b \partial c_{(0)} : + \frac{-2}{z^3} (-1) : c_{(z)} bc_{(0)} : + \frac{1}{z} (+1) : \partial b_{(z)} c \partial c_{(0)} : + \frac{-1}{z^2} \cdot \frac{1}{z} (+1) \partial c(0) + \frac{-2}{z^3} \cdot \frac{1}{z} (-1) c(0) \sim \frac{-1}{z^2} (-j^{bc}(0) + \mathcal{O}(z^2)) + \frac{2}{z^3} \left(z \, j^{bc}(0) + \frac{z^2}{2} : bc \, \partial^2 c :_{(0)} + \mathcal{O}(z^3) \right) + \frac{1}{z} (: (\partial b) c \, \partial c :_{(0)} + \mathcal{O}(z)) + \frac{-1}{z^3} \partial c(0) + \frac{2}{z^4} c(0) \sim \frac{4}{2z^4} c(0) + \frac{-1}{z^3} \partial c(0) + \frac{3}{z^2} j^{bc}(0) + \frac{1}{z} : (bc \, \partial^2 c + (\partial b) c \, \partial c) :_{(0)}, \sim \frac{4}{2z^4} c(0) + \frac{-1}{z^3} \partial c(0) + \frac{3}{z^2} j^{bc}(0) + \frac{1}{z} \partial j^{bc}(0),$$
(15)

$$\begin{aligned} :bc:_{(z)}:bc\,\partial c:_{(0)} &\sim :\overrightarrow{bc_{(z)} bc}\,\partial c_{(0)}: + :\overrightarrow{bc_{(z)} bc}\,\partial c_{(0)}: + :\overrightarrow{bc_{(z)} bc}\,\partial c_{(0)}: \\ &\quad + :\overrightarrow{bc_{(z)} bc}\,\partial c_{(0)}: + :\overrightarrow{bc_{(z)} bc}\,\partial c_{(0)}: \\ &\quad \sim \frac{1}{z}\,(+1):c_{(z)}\,b\,\partial c_{(0)}: + \frac{1}{z^2}\,(-1):c_{(z)}\,bc_{(0)}: + \frac{1}{z}\,(+1):b_{(z)}\,c\partial c_{(0)}: \\ &\quad + \frac{1}{z}\cdot\frac{1}{z}\,(+1)\,\partial c(0) + \frac{1}{z^2}\cdot\frac{1}{z}\,(-1)\,c(0) \\ :bc:_{(z)}:bc\,\partial c:_{(0)} &\sim \frac{1}{z}\,(-j^{bc}(0)) + \frac{-1}{z^2}\,(z\,j^{bc}(0)) + \frac{1}{z}\,(j^{bc}(0)) + \frac{1}{z^2}\,\partial c(0) + \frac{-1}{z^3}\,c(0) \end{aligned}$$

² Normal ordering between ≥ 3 operators is in fact *not* associative; this directly leads to the ambiguity we are about to discover. See *Di Francesco et al* for more detailed discussions. Naïvely, $:bc \partial c:_{(0)}$ is *defined* as $b(0) c(z_1) \partial c(z_2)$ while $z_1, z_2 \to 0$, with singular terms subtracted; however, different ways of taking the limit might lead to different results. For example, we can first take $z_1 \to 0$ then $z_2 \to 0$, or we can first take $z_1 \to z_2$ then $z_2 \to 0$. This two procedures will differ by $\frac{3}{2} \partial^2 c(z)$, which is precisely the correction we are about to find out. *I suppose this is somehow related to topology, e.g. braid group?*

$$\sim \frac{-1}{z^3} c(0) + \frac{1}{z^2} \partial c(0) + \frac{-1}{z} j^{bc}(0), \tag{16}$$

$$\partial(:bc:)_{(z)}: bc \,\partial c:_{(0)} \sim \frac{6}{2z^4} \,c(0) + \frac{-2}{z^3} \,\partial c(0) + \frac{1}{z^2} \,j^{bc}(0), \tag{17}$$

$$T^{bc}(z) : bc \,\partial c :_{(0)} \sim \frac{-8}{2z^4} \,c(0) + \frac{3}{z^3} \,\partial c(0) + \frac{1}{z^2} \,j^{bc}(0) + \frac{1}{z} \,\partial j^{bc}(0), \tag{18}$$

$$T(z) j(0) \sim \left((12) + (13) + (18) \right) \sim \frac{D-8}{2z^4} c(0) + \frac{3}{z^3} \partial c(0) + \frac{1}{z^2} j(0) + \frac{1}{z} \partial j(0),$$
(19)

We see that j(z) defined with naïve normal ordering is *almost* but *not quite* a primary. It differs from primary OPE at $\mathcal{O}(\frac{1}{z^4})$ and $\mathcal{O}(\frac{1}{z^3})$. However, it is possible to make it into a primary by adding extra terms that do not interfere with current conservation $\bar{\partial}j = 0$. To cancel the $\frac{3}{z^3} \partial c(0)$ term, notice that $b(z) \partial^2 c(0) \sim \frac{2}{z^3}$, therefore it may be helpful to look at:

$$T(z) \partial^{2} c(0) \sim T^{bc}(z) \partial^{2} c(0) \sim \partial_{w}^{2} \left(T^{bc}(z) c(w) \right)_{w \to 0} \\ \sim \partial_{w}^{2} \left(\frac{-1}{(z-w)^{2}} c(w) + \frac{1}{z-w} \partial c(w) \right)_{w \to 0} \\ \sim \frac{-12}{2z^{4}} c(0) + \frac{-2}{z^{3}} \partial c(0) + \frac{1}{z^{2}} \partial^{2} c(0) + \frac{1}{z} \partial^{3} c(0),$$
(20)

Again we've used Tc OPE of the primary c(w). We see that indeed, the $\frac{1}{z^3} \partial c(0)$ term can be canceled by shifting j(z):

$$j(z) \longmapsto j(z) + \frac{3}{2}\partial^2 c(z), \quad j(z) = cT^X + :bc\,\partial c: + \frac{3}{2}\partial^2 c,$$
(21)

$$T(z)j(0) \sim \frac{D-26}{2z^4}c(0) + \frac{1}{z^2}j(0) + \frac{1}{z}\partial j(0),$$
(22)

We see that j(z) defined in this way is a primary of weight (1,0) in D = 26. This is the quantum BRST current.

(b) For jj OPE, we have:

 \sim

$$j = cT^X + j', \quad j' \equiv j^{bc} + \frac{3}{2}\partial^2 c, \quad j^{bc} = \frac{1}{2} : cT^{bc} := :bc\,\partial c:,$$
 (23)

$$j_{z}j_{0} \sim : \left\{T_{z}^{X}T_{0}^{X}\right\}c_{z}c_{0}: + :\left\{c_{z}j_{0}'\right\}T_{z}^{X}: + :\left\{j_{z}'c_{0}\right\}T_{0}^{X}: + j_{z}'j_{0}'$$

$$\sim :\left\{T_{z}^{X}T_{0}^{X}\right\}c_{z}c_{0}: + :\left\{c_{z}j_{0}^{bc}\right\}T_{z}^{X}: + :\left\{j_{z}^{bc}c_{0}\right\}T_{0}^{X}: + j_{z}'j_{0}',$$
(24)

From now on, for convenience and clarity, we will use subscripts to denote variable dependence: $c_z = c(z)$. Let's compute this term by term. We have:

$$\{T_{z}^{X}T_{0}^{X}\}c_{z}c_{0}: \sim :\left(\frac{D}{2z^{4}} + \frac{2}{z^{2}}T_{0}^{X} + \frac{1}{z}\partial T_{0}^{X}\right)\left(z\partial c_{0} + \frac{z^{2}}{2}\partial^{2}c_{0} + \frac{z^{3}}{6}\partial^{3}c_{0}\right)c_{0}: \\ \sim -\left(\frac{D}{2z^{3}}c\partial c_{0} + \frac{D}{4z^{2}}c\partial^{2}c_{0} + \frac{D}{12z}c\partial^{3}c_{0} + \frac{2}{z}:T^{X}c\partial c_{0}:\right),$$
(25)

$$j_{z}^{bc}c_{0} \sim \frac{1}{2}: cT^{bc}:_{z}c_{0} \sim \frac{1}{2}c_{z}\left\{:T^{bc}:_{z}c_{0}\right\} \sim \frac{1}{2}c_{z}\left\{T_{z}c_{0}\right\} \\ \sim -\frac{1}{2}\left(\frac{-1}{z^{2}}c_{0}+\frac{1}{z}\partial c_{0}\right)\left(c_{0}+z\partial c_{0}\right) \sim 0,$$
(26)

$$j_0^{bc}c_z \sim 0,\tag{27}$$

3

$$j'_{z}j'_{0} \sim j^{bc}_{z}j^{bc}_{0} + \frac{3}{2}j^{bc}_{z}\partial^{2}c_{0} + \frac{3}{2}\partial^{2}c_{z}j^{bc}_{0} \sim \frac{1}{2}:cT^{bc}:_{z}j^{bc}_{0} + \frac{3}{2}(j^{bc}_{z}\partial^{2}c_{0} + \partial^{2}c_{z}j^{bc}_{0}),$$

$$(28)$$

The task is now reduced to calculating terms in the above j'j' OPE, which can be laboriously computed following a similar procedure as before. Note that there will be a $\frac{1}{z} : cT^{bc} : \partial c_0$ term which combines with the $\frac{2}{z} : cT^X : \partial c_0$ term in (25). In total, we obtain the final jj OPE:

$$j_z j_0 \sim -\frac{D-18}{2z^3} c \,\partial c_0 - \frac{D-18}{4z^2} c \,\partial^2 c_0 - \frac{D-26}{12z} c \,\partial^3 c_0 \tag{29}$$

(c) Following the convention of *Polchinski*, expand X^{μ} , b, c into modes α_n^{μ} , b_n , c_n , then a generic level 2 state of an open string can be created as³:

$$|\psi\rangle = \left(e_{\mu\nu} \alpha^{\mu}_{-1} \alpha^{\nu}_{-1} + \beta_{\mu} \alpha^{\mu}_{-1} b_{-1} + \gamma_{\mu} \alpha^{\mu}_{-1} c_{-1} + \eta b_{-1} c_{-1} + e_{\mu} \alpha^{\mu}_{-2} + \beta b_{-2} + \gamma c_{-2} \right) |k;0\rangle$$

$$(30)$$

Here $e_{\mu\nu}$ is chosen to be symmetric since $\alpha^{\mu}_{-1}\alpha^{\nu}_{-1}$ commutes. By acting on L_0 (expanded in modes), we find that $m^2 = -k^2 = \frac{1}{\alpha'} = l_s$: massive.

The BRST charge $Q = \frac{1}{2\pi i} \oint (dz \, j(z) - d\bar{z} \, \tilde{j}(z))$ can also be expanded in modes; note that:

$$Q^{2} = \frac{1}{2} \{Q, Q\} \propto \oint \frac{\mathrm{d}z}{2\pi i} \operatorname{Res}_{z' \to z} j(z') j(z) + (\text{conjugate})$$
(31)

Compared with the jj OPE, we see that Q is nilpotent iff. D = 26, i.e. the critical dimension of bosonic string theory. This condition is necessary for consistent BRST quantization.

The physical states are firstly, Q-closed; i.e.

$$Q_B |\psi\rangle = 0 \implies 4l_s \, k^\mu e_{\mu\nu} + l_s \, k_\nu \eta + e_\nu = 0, \quad 2\sqrt{2} \, l_s \, k^\mu + e_\nu^\nu e_\mu = 0, \quad \beta_\mu = \beta = 0, \tag{32}$$

This is also the negative-norm states.

On the other hand, Q-exact states generate gauge transformations; this gives:

$$\gamma_{\nu} \mapsto \gamma_{\nu} + \gamma'_{\nu}, \quad \gamma \mapsto \gamma + \gamma', \quad \eta \mapsto \eta + \eta', \quad e_{\mu\nu} \mapsto e_{\mu\nu} + l_s \left(\beta'_{\mu} k_{\nu} + \beta'_{\nu} k_{\mu}\right), \tag{33}$$

Here $\beta'_{\mu}, \gamma'_{\nu}, \gamma', \eta'$ are arbitrary gauge parameters. For closed string the result can be obtained by the doubling trick, i.e. by introducing anti-holomorphic modes $\tilde{\alpha}, \tilde{b}, \tilde{c}$ and imposing reality conditions. The result is similar.

2 Linear Dilaton CFT:

For $z \mapsto z + \epsilon(z)$, we have:

$$\delta X^{\mu} = -\epsilon \partial X^{\mu} - \bar{\epsilon} \bar{\partial} X^{\mu} - \frac{\alpha' V^{\mu}}{2} \left(\partial \epsilon + \bar{\partial} \bar{\epsilon} \right)$$
(34)

Note that the α' term has no dependence on X.

³ Reference: Bram M. Wouters, *BRST quantization and string theory spectra*.

(a) For simplicity, assume for now X = X(z): holomorphic. Note that the α' term comes from the transformation of "*internal*" degrees of freedom, associated with the conformal properties of X. We have:

$$X'(z') - X(z) = -\frac{\alpha' V}{2} \,\partial\epsilon + \mathcal{O}(\epsilon^2) \tag{35}$$

This is a first order approximation of the finite transformation, where the transformation parameters are the modes ϵ_n of $\epsilon(z)$; namely, we have:

$$w(z) = z + \epsilon(z) + \mathcal{O}(\epsilon^2), \quad \epsilon(z) = \sum_{n} \epsilon_n z^n$$
(36)

$$F[w(z)] = X'(z') - X(z) \xrightarrow{w \to 0} -\frac{\alpha' V}{2} \partial \epsilon + \mathcal{O}(\epsilon^2)$$
(37)

What the above actually means is that:

$$\frac{\delta}{\delta\epsilon_n} F[w(z)]_{\epsilon \to 0} = -\frac{\alpha' V}{2} \frac{\delta}{\delta\epsilon_n} \partial_z \left(w(z) - z \right) = -\frac{\alpha' V}{2} n z^{n-1}$$
(38)

Where $\epsilon \to 0$ corresponds to $w \to z$, i.e. the transformation goes to the identity. On the other hand,

$$\frac{\delta F}{\delta \epsilon_n} = \frac{\partial F}{\partial w} \frac{\delta w}{\delta \epsilon_n} + \frac{\partial F}{\partial (\partial w)} \frac{\delta (\partial w)}{\delta \epsilon_n} + \frac{\partial F}{\partial (\partial^2 w)} \frac{\delta (\partial^2 w)}{\delta \epsilon_n} + \cdots$$

$$= \frac{\partial F}{\partial w} z^n + \frac{\partial F}{\partial (\partial w)} n z^{n-1} + \frac{\partial F}{\partial (\partial^2 w)} n (n-1) z^{n-2} + \cdots$$
(39)

By comparing the two above equations, and noting that $\frac{\partial F}{\partial(\partial \bullet w)}$ should have no dependence on n, we obtain the following constraints on the form of F[w(z)]:

$$F|_{w \to z} = 0, \quad \frac{\partial F}{\partial w}\Big|_{w \to z} = 0, \quad \frac{\partial F}{\partial (\partial w)}\Big|_{w \to z} = -\frac{\alpha' V}{2}, \quad \frac{\partial F}{\partial (\partial^k w)}\Big|_{w \to z} = 0, \quad k = 2, 3, \cdots$$
(40)

We can think of this as the first order "Taylor" coefficients of F[w] in the functional space, around the point $w(z) \to z$. Note that $\partial w|_{w\to z} = 1$, while $\partial^k w|_{w\to z} = 0$, it is thus natural to consider the following ansatz:

$$F = F[\partial w], \quad F[1] = 0, \quad \frac{\partial F[x]}{\partial x}\Big|_{x \to 1} = -\frac{\alpha' V}{2} \tag{41}$$

In the end we shall obtain that⁴:

$$X'(z',\bar{z}') - X(z,\bar{z}) = -\frac{\alpha' V}{2} \ln\left(\frac{\mathrm{d}z'}{\mathrm{d}z}\frac{\mathrm{d}\bar{z}'}{\mathrm{d}\bar{z}}\right)$$
(42)

A better recipe to find finite transformations is to consider its properties under composition, which will lead to some constraints that can be solved to obtain the result⁵.

⁴ I would like to thank Lucy Smith for helpful discussions.

⁵ See bryango.github.io/resources/archive/alpha/schwarzian.pdf for some detailed discussions.

(b) Perform the usual Noether's procedure on the free boson action, and we have:

$$\delta \mathcal{L} \propto \frac{1}{\alpha'} \left(\partial \, \delta X^{\mu} \, \bar{\partial} X_{\mu} + \partial X^{\mu} \bar{\partial} \, \delta X_{\mu} \right) \sim \bar{\partial} \epsilon \left(V^{\mu} \partial^2 X^{\mu} - \frac{1}{\alpha'} \partial X^{\mu} \bar{\partial} X_{\mu} \right) \tag{43}$$

Here we've plugged in the holomorphic part of δX^{μ} , used integration by parts to move $\bar{\partial}$ before ϵ , and collected the $\bar{\partial}\epsilon$ coefficients. This gives:

$$T(z) = -\frac{1}{\alpha'} : \partial X^{\mu} \bar{\partial} X_{\mu} : + V^{\mu} \partial^2 X^{\mu}$$
(44)

With $X_z^{\mu} X_0^{\nu} \sim -\frac{\alpha'}{2} \eta^{\mu\nu} \ln |z|^2$ unchanged, the *TT* OPE can be calculated following the usual procedure, as shown in great detail before. Here we can use the known result from free boson theory to speed up our calculation:

$$T_{z}T_{0} \sim \left(V_{\mu}\partial^{2}X^{\mu} + T'\right)_{z} \left(V_{\mu}\partial^{2}X^{\mu} + T'\right)_{0} \\ \sim V_{\mu}V_{\nu} \,\partial^{2}X_{z}^{\mu} \,\partial^{2}X_{0}^{\nu} + V_{\mu} \,\partial^{2}X_{z}^{\mu} \,T'_{0} + V_{\mu}T'_{z} \,\partial^{2}X_{0}^{\mu} + T'_{z}T'_{0}$$

$$\tag{45}$$

Here T' is the usual free boson stress tensor. Combining all terms yields:

$$T_z T_0 \sim \frac{D + 6\alpha' V^2}{2z^4} + \frac{2}{z^2} T_0 + \frac{1}{z} \partial T_0, \quad c = D + 6\alpha' V^2$$
(46)

3 Bosonic Strings on S^3 :

For bosonic strings moving on S^3 (radius R) with background dilaton $\Phi = \text{const.}$ and B-field:

$$B = R^2 \sin \theta \left(\psi - \sin \psi \cos \psi \right) \, \mathrm{d}\theta \wedge \mathrm{d}\phi \tag{47}$$

The corresponding β -functions and trace anomaly can be computed using the formulae given in *Polchinski*; here (ψ, θ, ϕ) is the usual spherical coordinates on S^3 .

In fact, field strength:

$$H = dB = 2R^2 \sin\theta \sin\psi \,d\psi \wedge d\theta \wedge d\phi \tag{48}$$

While the spacetime curvature for a maximally symmetric sphere⁶: $\mathcal{R}_{\mu\nu} = \frac{2}{R^2} g_{\mu\nu}$, $\mathcal{R} = \frac{6}{R^2}$. Plug in these results, and we have:

$$\beta^G = \beta^B = 0, \quad T^a_{\ a} \simeq -\frac{1}{2} \,\beta^\Phi \mathcal{R} = -\frac{D - 26 - \alpha' \mathcal{R}}{12} \,\mathcal{R} \tag{49}$$

(a) Compared with the trace anomaly formula of a CFT: $T_a^a = -\frac{1}{12} c\mathcal{R}$, where \mathcal{R} is the world-sheet Ricci scalar, we see that our theory is indeed conformally invariant with Weyl anomaly. Its central charge is given by:

$$c \simeq D - 26 - \alpha' \mathcal{R} = 3 - 26 - \frac{6\alpha'}{R^2}$$
 (50)

This includes ghost contribution (-26). If we do not gauge the conformal symmetry, then there will not be ghost contribution, and we will have $c \simeq 3 - \frac{6\alpha'}{R^2}$.

 $^{^{6}}$ I would like to thank kh for some very helpful hints.

(b) The background *B* field given above is not single-valued on the ψ circle. Note that we've encountered such difficulty in electromagnetism with a multi-valued $A^{\mu}(x)$. In fact, the resolution for this issue is very similar to Dirac's quantization of the magnetic monopole⁷: by allowing the action *S* to be invariant modulo 2π , since $e^{-(S+2\pi i)} = e^{-S}$.

More specifically, for $\psi \mapsto \psi + 2\pi$, we have:

$$2\pi i \, n = \Delta S = \frac{i}{2\pi\alpha'} \, \Delta \int_{\Sigma} X^* B = \frac{i}{2\pi\alpha'} \, \Delta \int_{X(\Sigma)} B = \frac{i}{2\pi\alpha'} \, \Delta \int_M H \tag{51}$$

B is a 2-form in S^3 , X^*B denotes its pullback to the worldsheet, and $X(\Sigma) \subset S^3$ denotes the embedding of Σ into S^3 . Note that H is proportional to the volume form in S^3 , hence we have:

$$\Delta \int_{M} H = 2R^2 \,\Delta \operatorname{Vol}(M) = 2R^2 \,\mathbb{Z} \operatorname{Vol}(S^3) = 2R^2 \,2\pi^2 \,\mathbb{Z} = 4\pi^2 R^2 \,\mathbb{Z} \tag{52}$$

This leads to the following quantization:

$$\frac{R^2}{\alpha'} = n \in \mathbb{Z}, \quad R \ge \sqrt{\alpha'} \ge \left(\alpha'/\ell\right)^{1/3} \tag{53}$$

In particular, in string units: $\alpha' = 1$, we have $R \ge 1$.

4 Anomalous Currents:

(a) For a conserved current in flat worldsheet to be anomalous in curved worldsheet, then its deviation from conservation must be proportional to the Ricci scalar:

$$\nabla_a j^a = QR, \quad Q = \text{const.}$$
 (54)

The logic here is similar to the Weyl anomaly⁸: $\nabla_a j^a$ is diff- and Poincaré-invariant with dimension 2, because we have preserved these symmetries, and it vanishes in the flat case; this leaves only one possibility — $\nabla_a j^a \propto R$: the Ricci scalar.

For conformal transformation $z \mapsto z + \epsilon(z)$, $\overline{z} \mapsto \overline{z} + \overline{\epsilon}(\overline{z})$, we have:

$$\delta_{\epsilon} j(0) = -\operatorname{Res}_{z \to 0} \epsilon(z) T(z) j(0) - \operatorname{Res}_{\bar{z} \to 0} \bar{\epsilon}(\bar{z}) \tilde{T}(\bar{z}) j(0)$$
(55)

Hence the z^{-3}, \bar{z}^{-3} coefficients of the OPE reflect the $\epsilon = z^2$, $\bar{\epsilon} = \bar{z}^2$ transformation of j. By comparing the Weyl transformations⁹, this yields a total coefficient of 4Q.

(b) For bc CFT with j = :cb:, the anomaly can be explicitly calculated using our results in (a), i.e. by calculating Tj OPE. Following the standard procedure¹⁰, we obtain that:

$$T_z j_0 \sim \frac{1 - 2\lambda}{z^3} + \mathcal{O}\left(\frac{1}{z^2}\right) \tag{56}$$

Note that the anti-holomorphic part is zero, therefore, we have: $Q = \frac{1}{4} (1 - 2\lambda)$.

⁷ Reference: J. J. Sakurai, Modern Quantum Mechanics.

⁸ See *Polchinski* for reference.

⁹ Note that (Conformal) = (Weyl) + (Translation).

¹⁰ For more detailed discussions, see Blumenhagen et al, Basic Concepts of String Theory.