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1 BRST Quantization of Bosonic String:

S = SX + Sbc, (1)

SX =
1

2πα′

ˆ
d2z ∂Xµ∂̄Xµ, Sbc =

1

2π

ˆ
d2z

(
b ∂̄c+ b̃ ∂c̃

)
(2)

This is the gauge fixed action. The corresponding BRST transformation is listed in Polchinski; for
each of the subsystems, we have its energy-momentum:

TX(z) = − 1

α′ :∂X
µ∂Xµ : , T̃X(z̄) = − 1

α′ : ∂̄X
µ∂̄Xµ : , (3)

T bc(z) = : (∂b) c : − 2 ∂(: bc :), T̃ bc(z̄) = : (∂̄b̃) c̃ : − 2 ∂̄(: b̃c̃ :), (4)

(a) To get the energy-momentum of S, let’s visit each of the subsystems respectively; first, BRST
transformation of X is given by:

δXµ = iϵ
(
c∂ + c̃∂̄

)
Xµ (5)

Compared with the conformal transformation1: δXµ = −ϵ
(
v∂ + ṽ∂̄

)
Xµ, we see that they are in fact

identical under the equivalence −ϵv ∼ iϵc, −ϵṽ ∼ iϵc̃, hence we can simply follow the derivation of
conformal current and write down δSX ’s contribution to the conserved current:

jX = c(z)TX(z) (6)

The transformation of b, c is less obvious; for holomorphic current, we need only focus on the
holomorphic part of Sbc; on-shell variation yields:

0 = δSbc =

(
1

2π

ˆ
d2z

(
−∂̄c δb− ∂̄b δc

))
=0

+
1

2π

ˆ
d2z ∂̄(b δc) =

1

2π

ˆ
d2z ∂̄ϵ

(
−ibc ∂c

)
(7)

Here we’ve plugged in δc = iϵ(z, z̄) c∂c, and we have moved ∂̄ϵ to the beginning of the expression,
while respecting the anti-commuting nature of ϵ. With a conventional i coefficient (which agrees
with the convention of jX), we have bc’s contribution to the conserved current:

jbc = i
(
−ibc ∂c

)
= bc ∂c (8)

Note that jbc is, in fact, related to the energy-momentum (at least classically):

1

2
cT bc =

1

2
c (∂b) c− c ∂(bc) = −c ∂(bc) = −cb ∂c = bc ∂c = jbc (9)

Hence we have the classical BRST current:

j(z) = c(z)

(
TX +

1

2
T bc

)
(10)

□

1 We follow the convention of Polchinski unless otherwise stated.
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For a quantum version, redefine j(z) with normal ordering2, and we have:

T (z) j(0) ∼ TX(z)TX(0) c(0) + T bc(z) cTX(0) + T bc(z) : bc ∂c :(0), (11)

where TX(z)TX(0) c(0) ∼
(
D

2z4
+

2

z2
TX(0) +

1

z
∂TX(0)

)
c(0), (12)

Here we’ve used the fact that X and b, c is de-coupled in the gauge-fixed action, hence their OPE
is trivial. Also, we’ve expanded the first term using TT OPE of the free boson. Additionally, note
that c(z) is primary with weight (−1, 0), we have:

T bc(z) cTX(0) ∼
{
T bc(z) c(0)

}
TX(0)

∼
(
−1

z2
c(0) +

1

z
∂c(0)

)
TX(0),

(13)

The last term in (11) can be brute-forced as follows:

T bc(z) : bc ∂c :(0) =
(
: (∂b) c : − 2 ∂(: bc :)

)
(z)

: bc ∂c :(0) , (14)

: (∂b) c :(z) : bc ∂c :(0) ∼ : (∂b) c(z) bc ∂c(0) : + : (∂b) c(z) bc ∂c(0) : + : (∂b) c(z) bc ∂c(0) :

+ : (∂b) c(z) bc ∂c(0) : + : (∂b) c(z) bc ∂c(0) :

∼ −1

z2
(+1) : c(z) b ∂c(0) : +

−2

z3
(−1) : c(z) bc(0) : +

1

z
(+1) :∂b(z) c∂c(0) :

+
−1

z2
· 1
z
(+1) ∂c(0) +

−2

z3
· 1
z
(−1) c(0)

∼ −1

z2
(
−jbc(0) +O(z2)

)
+

2

z3

(
z jbc(0) +

z2

2
: bc ∂2c :(0) +O(z3)

)
+

1

z

(
: (∂b) c ∂c :(0) +O(z)

)
+

−1

z3
∂c(0) +

2

z4
c(0)

∼ 4

2z4
c(0) +

−1

z3
∂c(0) +

3

z2
jbc(0) +

1

z
:
(
bc ∂2c+ (∂b) c ∂c

)
:(0) ,

∼ 4

2z4
c(0) +

−1

z3
∂c(0) +

3

z2
jbc(0) +

1

z
∂jbc(0), (15)

: bc :(z) : bc ∂c :(0) ∼ : bc(z) bc ∂c(0) : + : bc(z) bc ∂c(0) : + : bc(z) bc ∂c(0) :

+ : bc(z) bc ∂c(0) : + : bc(z) bc ∂c(0) :

∼ 1

z
(+1) : c(z) b ∂c(0) : +

1

z2
(−1) : c(z) bc(0) : +

1

z
(+1) : b(z) c∂c(0) :

+
1

z
· 1
z
(+1) ∂c(0) +

1

z2
· 1
z
(−1) c(0)

: bc :(z) : bc ∂c :(0) ∼
1

z

(
−jbc(0)

)
+

−1

z2
(
z jbc(0)

)
+

1

z

(
jbc(0)

)
+

1

z2
∂c(0) +

−1

z3
c(0)

2 Normal ordering between ≥ 3 operators is in fact not associative; this directly leads to the ambiguity we are about
to discover. See Di Francesco et al for more detailed discussions. Naïvely, : bc ∂c :(0) is defined as b(0) c(z1) ∂c(z2)

while z1, z2 → 0, with singular terms subtracted; however, different ways of taking the limit might lead to different
results. For example, we can first take z1 → 0 then z2 → 0, or we can first take z1 → z2 then z2 → 0. This
two procedures will differ by 3

2
∂2c(z), which is precisely the correction we are about to find out. I suppose this is

somehow related to topology, e.g. braid group?
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∼ −1

z3
c(0) +

1

z2
∂c(0) +

−1

z
jbc(0), (16)

∂(: bc :)(z) : bc ∂c :(0) ∼
6

2z4
c(0) +

−2

z3
∂c(0) +

1

z2
jbc(0), (17)

T bc(z) : bc ∂c :(0) ∼
−8

2z4
c(0) +

3

z3
∂c(0) +

1

z2
jbc(0) +

1

z
∂jbc(0), (18)

T (z) j(0) ∼
(
(12) + (13) + (18)

)
∼ D − 8

2z4
c(0) +

3

z3
∂c(0) +

1

z2
j(0) +

1

z
∂j(0), (19)

We see that j(z) defined with naïve normal ordering is almost but not quite a primary. It differs
from primary OPE at O

(
1
z4

)
and O

(
1
z3

)
. However, it is possible to make it into a primary by adding

extra terms that do not interfere with current conservation ∂̄j = 0. To cancel the 3
z3 ∂c(0) term,

notice that b(z) ∂2c(0) ∼ 2
z3 , therefore it may be helpful to look at:

T (z) ∂2c(0) ∼ T bc(z) ∂2c(0) ∼ ∂2w
(
T bc(z) c(w)

)
w→0

∼ ∂2w

(
−1

(z − w)2
c(w) +

1

z − w
∂c(w)

)
w→0

∼ −12

2z4
c(0) +

−2

z3
∂c(0) +

1

z2
∂2c(0) +

1

z
∂3c(0),

(20)

Again we’ve used Tc OPE of the primary c(w). We see that indeed, the 1
z3 ∂c(0) term can be canceled

by shifting j(z):

j(z) 7−→ j(z) +
3

2
∂2c(z), j(z) = cTX + : bc ∂c : +

3

2
∂2c, (21)

T (z) j(0) ∼ D − 26

2z4
c(0) +

1

z2
j(0) +

1

z
∂j(0), (22)

We see that j(z) defined in this way is a primary of weight (1, 0) in D = 26. This is the quantum
BRST current. □

(b) For jj OPE, we have:

j = cTX + j′, j′ ≡ jbc +
3

2
∂2c, jbc =

1

2
: cT bc : = : bc ∂c : , (23)

jzj0 ∼ :
{
TX
z T

X
0

}
czc0 : + :{czj′0}TX

z : + :{j′zc0}TX
0 : + j′zj

′
0

∼ :
{
TX
z T

X
0

}
czc0 : + :

{
czj

bc
0

}
TX
z : + :

{
jbcz c0

}
TX
0 : + j′zj

′
0 ,

(24)

From now on, for convenience and clarity, we will use subscripts to denote variable dependence:
cz = c(z). Let’s compute this term by term. We have:

:
{
TX
z T

X
0

}
czc0 : ∼ :

(
D

2z4
+

2

z2
TX
0 +

1

z
∂TX

0

)(
z ∂c0 +

z2

2
∂2c0 +

z3

6
∂3c0

)
c0 :

∼ −
(
D

2z3
c ∂c0 +

D

4z2
c ∂2c0 +

D

12z
c ∂3c0 +

2

z
:TXc ∂c0 :

)
, (25)

jbcz c0 ∼ 1

2
: cT bc :z c0 ∼ 1

2
cz
{
:T bc :z c0

}
∼ 1

2
cz{Tz c0}

∼ −1

2

(
−1

z2
c0 +

1

z
∂c0

)(
c0 + z ∂c0

)
∼ 0, (26)

jbc0 cz ∼ 0, (27)
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j′zj
′
0 ∼ jbcz j

bc
0 +

3

2
jbcz ∂2c0 +

3

2
∂2cz j

bc
0

∼ 1

2
: cT bc :z j

bc
0 +

3

2

(
jbcz ∂2c0 + ∂2cz j

bc
0

)
,

(28)

The task is now reduced to calculating terms in the above j′j′ OPE, which can be laboriously
computed following a similar procedure as before. Note that there will be a 1

z : cT bc : ∂c0 term which
combines with the 2

z : cTX : ∂c0 term in (25). In total, we obtain the final jj OPE:

jzj0 ∼ −D − 18

2z3
c ∂c0 −

D − 18

4z2
c ∂2c0 −

D − 26

12z
c ∂3c0 (29)

(c) Following the convention of Polchinski, expand Xµ, b, c into modes αµ
n, bn, cn, then a generic

level 2 state of an open string can be created as3:

|ψ〉 =
(
eµνα

µ
−1α

ν
−1 + βµα

µ
−1b−1 + γµα

µ
−1c−1

+ η b−1c−1 + eµα
µ
−2 + β b−2 + γ c−2

)
|k; 0〉

(30)

Here eµν is chosen to be symmetric since αµ
−1α

ν
−1 commutes. By acting on L0 (expanded in modes),

we find that m2 = −k2 = 1
α′ = ls: massive.

The BRST charge Q = 1
2πi

∮ (
dz j(z)− dz̄ j̃(z)

)
can also be expanded in modes; note that:

Q2 =
1

2
{Q,Q} ∝

∮ dz
2πi

Res
z′→z

j(z′) j(z) + (conjugate) (31)

Compared with the jj OPE, we see that Q is nilpotent iff. D = 26, i.e. the critical dimension of
bosonic string theory. This condition is necessary for consistent BRST quantization.

The physical states are firstly, Q-closed; i.e.

QB |ψ〉 = 0 =⇒ 4ls k
µeµν + ls kνη + eν = 0, 2

√
2 ls k

µ + eννeµ = 0, βµ = β = 0, (32)

This is also the negative-norm states.

On the other hand, Q-exact states generate gauge transformations; this gives:

γν 7→ γν + γ′ν , γ 7→ γ + γ′, η 7→ η + η′, eµν 7→ eµν + ls
(
β′
µkν + β′

νkµ
)
, (33)

Here β′
µ, γ

′
ν , γ

′, η′ are arbitrary gauge parameters. For closed string the result can be obtained by the
doubling trick, i.e. by introducing anti-holomorphic modes α̃, b̃, c̃ and imposing reality conditions.
The result is similar. ■

2 Linear Dilaton CFT:

For z 7→ z + ϵ(z), we have:

δXµ = −ϵ∂Xµ − ϵ̄∂̄Xµ − α′V µ

2

(
∂ϵ+ ∂̄ϵ̄

)
(34)

Note that the α′ term has no dependence on X.

3 Reference: Bram M. Wouters, BRST quantization and string theory spectra.

https://esc.fnwi.uva.nl/thesis/centraal/files/f1989820784.pdf
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(a) For simplicity, assume for now X = X(z): holomorphic. Note that the α′ term comes from
the transformation of “internal” degrees of freedom, associated with the conformal properties of X.
We have:

X ′(z′)−X(z) = −α
′V

2
∂ϵ+O

(
ϵ2
)

(35)

This is a first order approximation of the finite transformation, where the transformation parameters
are the modes ϵn of ϵ(z); namely, we have:

w(z) = z + ϵ(z) +O
(
ϵ2
)
, ϵ(z) =

∑
n

ϵnz
n (36)

F [w(z)] = X ′(z′)−X(z)
w→0−−−−→ −α

′V

2
∂ϵ+O

(
ϵ2
)

(37)

What the above actually means is that:

δ

δϵn
F [w(z)]ϵ→0 = −α

′V

2

δ

δϵn
∂z
(
w(z)− z

)
= −α

′V

2
nzn−1 (38)

Where ϵ→ 0 corresponds to w → z, i.e. the transformation goes to the identity. On the other hand,

δF

δϵn
=
∂F

∂w

δw

δϵn
+

∂F

∂(∂w)

δ(∂w)

δϵn
+

∂F

∂(∂2w)

δ(∂2w)

δϵn
+ · · ·

=
∂F

∂w
zn +

∂F

∂(∂w)
nzn−1 +

∂F

∂(∂2w)
n(n− 1) zn−2 + · · ·

(39)

By comparing the two above equations, and noting that ∂F
∂(∂•w) should have no dependence on n,

we obtain the following constraints on the form of F [w(z)]:

F |w→z = 0,
∂F

∂w

∣∣∣∣
w→z

= 0,
∂F

∂(∂w)

∣∣∣∣
w→z

= −α
′V

2
,

∂F

∂(∂kw)

∣∣∣∣
w→z

= 0, k = 2, 3, · · · (40)

We can think of this as the first order “Taylor” coefficients of F [w] in the functional space, around
the point w(z) → z. Note that ∂w|w→z = 1, while ∂kw|w→z = 0, it is thus natural to consider the
following ansatz:

F = F [∂w], F [1] = 0,
∂F [x]

∂x

∣∣∣∣
x→1

= −α
′V

2
(41)

In the end we shall obtain that4:

X ′(z′, z̄′)−X(z, z̄) = −α
′V

2
ln

(
dz′
dz

dz̄′
dz̄

)
(42)

A better recipe to find finite transformations is to consider its properties under composition, which
will lead to some constraints that can be solved to obtain the result5.

4 I would like to thank Lucy Smith for helpful discussions.
5 See bryango.github.io/resources/archive/alpha/schwarzian.pdf for some detailed discussions.

https://bryango.github.io/resources/archive/alpha/schwarzian.pdf
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(b) Perform the usual Noether’s procedure on the free boson action, and we have:

δL ∝ 1

α′

(
∂ δXµ ∂̄Xµ + ∂Xµ∂̄ δXµ

)
∼ ∂̄ϵ

(
V µ∂2Xµ − 1

α′ ∂X
µ∂̄Xµ

)
(43)

Here we’ve plugged in the holomorphic part of δXµ, used integration by parts to move ∂̄ before ϵ,
and collected the ∂̄ϵ coefficients. This gives:

T (z) = − 1

α′ :∂X
µ∂̄Xµ: + V µ∂2Xµ (44)

With Xµ
zX

ν
0 ∼ −α′

2 η
µν ln |z|2 unchanged, the TT OPE can be calculated following the usual

procedure, as shown in great detail before. Here we can use the known result from free boson theory
to speed up our calculation:

TzT0 ∼
(
Vµ∂

2Xµ + T ′)
z

(
Vµ∂

2Xµ + T ′)
0

∼ VµVν ∂
2Xµ

z ∂
2Xν

0 + Vµ ∂
2Xµ

z T
′
0 + VµT

′
z ∂

2Xµ
0 + T ′

z T
′
0

(45)

Here T ′ is the usual free boson stress tensor. Combining all terms yields:

TzT0 ∼ D + 6α′V 2

2z4
+

2

z2
T0 +

1

z
∂T0, c = D + 6α′V 2 (46)

■

3 Bosonic Strings on S3:

For bosonic strings moving on S3 (radius R) with background dilaton Φ = const. and B-field:

B = R2 sin θ (ψ − sinψ cosψ) dθ ∧ dϕ (47)

The corresponding β-functions and trace anomaly can be computed using the formulae given in
Polchinski; here (ψ, θ, ϕ) is the usual spherical coordinates on S3.

In fact, field strength:

H = dB = 2R2 sin θ sinψ dψ ∧ dθ ∧ dϕ (48)

While the spacetime curvature for a maximally symmetric sphere6: Rµν = 2
R2 gµν , R = 6

R2 . Plug in
these results, and we have:

βG = βB = 0, T a
a ' −1

2
βΦR = −D − 26− α′R

12
R (49)

(a) Compared with the trace anomaly formula of a CFT: T a
a = − 1

12 cR, where R is the world-
sheet Ricci scalar, we see that our theory is indeed conformally invariant with Weyl anomaly. Its
central charge is given by:

c ' D − 26− α′R = 3− 26− 6α′

R2
(50)

This includes ghost contribution (−26). If we do not gauge the conformal symmetry, then there will
not be ghost contribution, and we will have c ' 3− 6α′

R2 .

6 I would like to thank 林般 for some very helpful hints.
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(b) The background B field given above is not single-valued on the ψ circle. Note that we’ve
encountered such difficulty in electromagnetism with a multi-valued Aµ(x). In fact, the resolution for
this issue is very similar to Dirac’s quantization of the magnetic monopole7: by allowing the action
S to be invariant modulo 2π, since e−(S+2πi) = e−S .

More specifically, for ψ 7→ ψ + 2π, we have:

2πi n = ∆S =
i

2πα′ ∆

ˆ
Σ

X∗B =
i

2πα′ ∆

ˆ
X(Σ)

B =
i

2πα′ ∆

ˆ
M

H (51)

B is a 2-form in S3, X∗B denotes its pullback to the worldsheet, and X(Σ) ⊂ S3 denotes the
embedding of Σ into S3. Note that H is proportional to the volume form in S3, hence we have:

∆

ˆ
M

H = 2R2 ∆Vol(M) = 2R2 ZVol(S3) = 2R2 2π2 Z = 4π2R2 Z (52)

This leads to the following quantization:

R2

α′ = n ∈ Z, R ≥
√
α′ ≥

(
α′/ℓ )1/3 (53)

In particular, in string units: α′ = 1, we have R ≥ 1. ■

4 Anomalous Currents:

(a) For a conserved current in flat worldsheet to be anomalous in curved worldsheet, then its
deviation from conservation must be proportional to the Ricci scalar:

∇aj
a = QR, Q = const. (54)

The logic here is similar to the Weyl anomaly8: ∇aj
a is diff- and Poincaré-invariant with dimension 2,

because we have preserved these symmetries, and it vanishes in the flat case; this leaves only one
possibility — ∇aj

a ∝ R: the Ricci scalar.

For conformal transformation z 7→ z + ϵ(z), z̄ 7→ z̄ + ϵ̄(z̄), we have:

δϵj(0) = −Res
z→0

ϵ(z)T (z) j(0)− Res
z̄→0

ϵ̄(z̄) T̃ (z̄) j(0) (55)

Hence the z−3, z̄−3 coefficients of the OPE reflect the ϵ = z2, ϵ̄ = z̄2 transformation of j. By
comparing the Weyl transformations9, this yields a total coefficient of 4Q.

(b) For bc CFT with j = : cb : , the anomaly can be explicitly calculated using our results in (a),
i.e. by calculating Tj OPE. Following the standard procedure10, we obtain that:

Tzj0 ∼ 1− 2λ

z3
+O

(
1

z2

)
(56)

Note that the anti-holomorphic part is zero, therefore, we have: Q = 1
4 (1− 2λ). ■

7 Reference: J. J. Sakurai, Modern Quantum Mechanics.
8 See Polchinski for reference.
9 Note that (Conformal ) = (Weyl ) + (Translation ).
10 For more detailed discussions, see Blumenhagen et al, Basic Concepts of String Theory.


