String Theory Nel @O®®O

DBryen Compiled @ 2023/09/14

Read Polchinski Sections 1.3 and 1.4:

Read, mostly understood. O

Spinning Closed String in AdS Space:

For a classical spinning string, we have Nambu-Goto action:
Snag = —T/dT do v/ —detvap,  Yab = Gup0a X" 0p X" (1)

Here G, is the spacetime metric. 74, can be treated as the induced metric on the worldsheet.

In AdS space we have:

ds* = R*(— cosh?pdt* + dp® + sinh®p dQ?) (2)
Where dQ? is the metric of a unit (d — 2)-sphere S?~2. For convenience let’s define unit S%2 metric
G}j, and raise or lower the ¢, j, - - - indices using G}j instead of Gyj, i.e.,

Gl; = Gyj/ (R?sinh®p), i,j=2,---,d—1 (3)

Furthermore, we consider the special case that the closed string is folded, like a rubber band
stretched along a line; in this case we can choose the worldsheet parameter (7,0) = (t,p) while
Q=Q(t, p) = Q(r,0), which leads to the following decomposition:

Do XH =61+ 60,0, a=0,1, i=2--,d—1, (4)
Yab = Gp,l/ aaXuabXV
=Gap + Gij 6aQi 8ij
= Gap + R?sinh®p G}; 9,Q" 9,
2 7cosh2p .12 (BEQ)2 002 - Op2
=R {( ) (00 e )} 5)

Here 0,0 - 0,2 = 0,0 0,0, = Gllj 0,80 0¥, and we have:
det yap = (R?)? {Sinh4p det (9,919, )
+ sinh®p ((0,9)* — (992)? cosh?p)
~eoshp ©
V/—det v, = R? { cosh?p — sinh?p ((0.92)% — (0:92)? cosh2p)
— sinh?p det (aagiabfzi)}w

Mark the end points of the string with p = r(¢), then the total length of such closed folded string
is £ = 4r. We then have:

S = —4TR2/dt/ dp \/cosh2p — sinh®p ((9,9)2 — (9p2)2 cosh®p) — sinh?p det (0,Q210,2)  (7)
0



Further simplification comes from the fact that, due to rotational symmetry, the string’s motion
can be restricted in a plane where its position is characterized by some angle § = Q% € {Q'},. In
this case other angle parameters Q°|;;, = 0, and the action is further reduced to:

S = —4TR2/dt/ dp \/cosh2p—sinh2p ((040)2 — (00)? cosh2 /dt/ dp L, (8)
0

L= —4TR? \/cosh2p —w?sinh®p, w =0, 0,0 =0 (9)

We consider the special solution § = wt, while in general the endpoint r = r(¢) could be dynamical;

variation of the action w.r.t. 7(t) gives!:

r4-or
0=06S=—4TR? /dt / dp\/cosh?p — w2 sinh?p = —4T R? /dt Vcosh®r — w? sinh?r or, (10)

r

cosh?
w? = .thT = coth?r (11)
sin r

Note that if w is constant, then r must be fixed by (11). Taking 6 as the only dynamical variable,
it is then straight-forward to write the energy E and angular momentum J for such folded closed

string:
. sinh?

web, =25 _urp waR P : (12)

Ow V/cosh?p — w? sinh?p

h2

J = / dpll = 4TR2 wsin (13)

\/COSh p— w? smh2

12
E:/ dp (w — £) :4TR2/ dp —r (14)
0 0 V/cosh?p — w? sinh?p

In the large string limit, 7 — 0o, w = cothr — 1. Expand in terms of ¢ = w —1 > 0, we find that
r= % In (1 + %) ~ % In %, or alternatively, e” - € ~ 2. With some help from Mathematica™, we get:

cosh?p — wsinh?p
\/ cosh?p — w2 sinh?p

E—J:4TR2/ dp :4TR2/ dp (1—|— 3 smh2(2p)—|—(9( ))
0

2

= 4TR2( (1-% E +0()) + 0(1)) = <2TR2 In i) (1-F+o) (15)

~ 2T R? (m 2)
€

Similarly, J ~ 4TR2/ dpsinh?p ~ TR? (%), this gives:
0

E—J~2TR*In (16)

TR?

I The above reasoning is confirmed in e.g. arXiv:hep-th/0204051.


https://arxiv.org/abs/hep-th/0204051

Special Conformal Transformations:

Iz 241
K(a) Fh t +x%a (17)

x =
1+2a 2+ a2x?

(a) Under special conformal transformation K (a), metric 6, + g,, while:

oxt Ox”

9o 42 dZ” = 8, Aot A, gap = Guv 5= =3 (18)
To calculate this we have to know the inverse transformation # = K~1(a)Z. First, notice the
following decomposition? of K (a):
" "
PN A (19)
at 3 +a L +at 2
i w I

ie. K(a): a8 +Ls % AN y”:%Jra“ N i:”:Z—Q, (20)

) oyt /1 h
1.e. ﬁ = ? ny = y'u = ﬁ + Cl'u (21)

From (21), we see that the transformation parameter a* composes linearly: K(b) K(a) = K(a+b),
therefore K~1(a) = K(—a), and we have:

Fh — 32k gH
wo_— _a) it — 7
2t =K(—a)& =20 7 +ta22 2 (22)
dar _dwr Oy (9 g\ 0 (3 N _ (0 g\ 0 &
oz oge 0z \9ge 2 ) 0z \ #2? \oge 52 ) \ 9z« 32 (23)

(o 230) (07— 2075) | (759)

Gup = Oy (700 — 207"5) (7267 — 22700 (70} — 235 (20 — 23735) [ (5°7°)

Suw - - N e -
L G 00, (8267 — 28704 ) (2265 — 2xpx5)/a:8 (24)
Xop g
P i 4:17 45@6
We see that gag = f(2) 6ap, With coefficient:
4
fa)=giat LL 2 B (14902 + a2%?)’ (25)
z
U
(b) In 2D with z = 2! +iz?, 2# ~ (2, 2), we see from (21) that:
zt z 1 1 1 z
—_— = = }— — s .. . — = = 26
22 |z\2 Z 2+a iLe. z w %+a T+ (26)
Expand in the @ — 0 limit, we find that w = 2 (1 — za — - ) ~ z — 224, i.e. it is generated by:
K;=—-2%0,=-2%, 0=0. (27)

2 See Di Francesco et al, and also github.com/davidsd/ph229.


https://github.com/davidsd/ph229
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Note that when considering non-holomorphic functions, we have to consider (z,z) as two inde-

pendent variables; hence the anti-holomorphic transformation z — w = H—% ~ % — Z%a provides
another degree of freedom, namely:
K, ~ (K:=-2%0, K, = —2%0), (28)

0=9,, 0=0;

Similarly, for translation z — z + a and its conjugate, we have P, ~ (Pz =0,P; = 5). However,
dilation and rotation are both encoded in a complex rescaling z — Az, A = re? € C; we have:

or < D=20+2z20,

2 Az, A=re? €C, ) U
00 +— M:z(zﬁ—za),

(29)

In summary, we have spang {P,, K,,D, M} = so(3,1) generating the “global” transformation
subgroup of the 2D conformal group; here, the s0(3, 1) boost is a linear combination® of P, and K,.
More specifically, in 2D any holomorphic or anti-holomorphic function gives a conformal transfor-
mation, hence the (classical) 2D conformal group is generated by:

by =210, 0, =2""10, meZ (30)

i.e. the Witt algebra (or Virasoro algbera Vir, with ¢ = 0). It is clear that a (complexified) so(3,1)
lives inside Vir,, i.e.,

s50(3,1)C = spang {P,,, K,,, D, M’}

_ - . (31)
= spang {lm, lm | m = 0,£1} = sl(2,R)" &¢ sl(2,R)" C Vir,
[ |
be CFT:
1 _
S = %/d%bac (32)

Stress tensor of a theory can be obtained via variation over the metric, or equivalently, over the
fields ¢’ with §¢ induced by some local spacetime translation x# +— z# + d2* | §2* = e(x) a*. Here
€(x) is any compactly supported bump function, centered around some point .

In 2D, we have u = z,%; for ¢(z,2) with conformal weight (h,h), consider z + 2/, z s Z.
For convenience, let’s first consider a generic variation dz = €(z, z) before restricting to spacetime
translation; we have:

d —h d—/ —h
0.2 = () () =2, (33)
5¢ = (~hde—hoe) o, (34)
56 =56~ 22 bak = (~hde —he) ¢~ <6 — €00, (35)

Here we use 5(;5 to denote the “internal” variation related to the conformal weights.

3 See e.g. github.com/davidsd/ph229.


https://github.com/davidsd/ph229

Note that ¢ = b, ¢ are anti-commuting Grassmann numbers, variation of the action gives:

55 [b,c,6b,8c] = ;/d% (6b Oc + b bc)
™

_ L [ 5 0 5 1 [ 2 5
—27T/dz( dc b abac)+27r/d zd(bdc) (36)

For unknown b, c and arbitary éb, dc, the second term is reduced to a boundary term at infinity and
can be dropped; imposing 6.5 = 0 gives the equation of motion (EOM): 9b = dc = 0.

On the other hand, for on-shell b,c and compactly supported ¢ = éb,dc given in (35), the first
term in (36) vanishes while §S¢ = 0 still holds; this gives:

0=06S0 = L /d225(b5c) L /d2z<§ (—(1 = X)bcde — bdce)

2m 2m (37)

= Qi /dzz (—=(1 = X) bc0de — b e e)
™

Here we've distributed the 0 operator and dropped all terms that vanish automatically by EOM.
Next we shall collect the O¢, De terms; integrating by parts on the first integrand gives:

0=1065)= % /d2z (1 =X)d(bc) — bdc) e

= % /d2z ((8b) ¢ — A D(be)) De (38)

=L [ @ae(z2)0.((0) c — A0(be)

Com

Notice that we have obtained a conserved current using a generic dz = €(z, 2),0z = é(z, 2); by

setting € = €(z), we get a energy momentum tensor?:

T(z) =:(9b)c: — A0(:be:) (39)
Normal ordering is added manually to remove singular terms.

To compute TT OPE, we need the OPE of b(z) ¢(0); this is obtained by examining the following
path integral, which is zero since the integrand is a total functional derivative:

0= /@b@c%(e‘s V) (40)

Taking ¢, = b,c, this generates operator equations such as 9b(z)c(0) = 2m6%(z,%). Note that
9(%) = 2m62(z, z), which gives:

b(2) ¢(0) ~ ¢(2) b(0) ~

; b(2) b(0) ~ 0 ~ ¢(2) c(0) (41)

With the bc OPE in hand, the TT OPE is computed directly with brute force, by repeatedly
applying Wick’s theorem. This gives:

—6A2 + 6\ — 1
~——

T(z)T(0) 1 (42)

z

In general we have —6A2? 4+ 6\ — 1 = £; for A\ = 2 this gives ¢ = —26. [ |

<
2

4 Note that the energy momentum tensor obtained in this way is generally not unique: it can be off by a boundary term
or any term that vanish on-shell; see Lubos’ comment at physics.stackexchange.com/a/96100, also arXiv:1601.
03616. However, it is possible to fix this redundancy by considering Tb OPE and match its conformal dimension. I
would like to thank ##% for pointing this out.


https://physics.stackexchange.com/a/96100
https://arxiv.org/abs/1601.03616
https://arxiv.org/abs/1601.03616

Free Fermion CFT:

S= [@wdnt, wi=vi b=t (43)
(a) Mode expansion of such chiral fermion is given by:
b= Y R b= o= iy, (44)
i ZkJr% 9 ik i 7
kezZ+3

Canonical quantization is achieved by simply imposing anti-commutation relations; this is justified
by mapping the system onto a cylinder, then b;;,’s indeed map to modes on the spatial circle®. The
only non-zero commutators are:

{bir, bf} = Oh1q00) (45)

This gives the only non-zero 2-point functions:

(ti(2) ¥ (w)) = Z Em@m%”
k,q€Z+ %
11 : &7 (46)
= 2 gy O b0 =2
k,q€Z+ 3%
Note that b} [0) =0, V k > 1.
(b)(c) Combining two v expansions gives the mode expansion of J,7 = :4p;(z) ¥ (2):, namely:

RO DE = A A SR (47)

kez q€Z+}

It is in fact more convenient to obtain the JJ OPE first, and then use it to find the [Jo, Jo] mode

J

commutator®; note that 1;(z) 17 (w) contraction gives Z‘S_"'w, we have:

J7(2) JH0) ~ 5;2’1 + %7:1(0) ; 5§ka(0)7 (48)
()0 0] = Gz e § a232(2) 2wy = 81700 = 6 (3 (19)

(d) Similar to be CFT, we have:
T() = 3 (i00's —s0uv's), () Tw) ~ 2 2L T

With each (complex) field contributing 4 x 2 central charge”.

5 This can be proven rigorously by considering operator equations like in the bc CFT problem.
6 T would like to thank % Z for providing this hint.

7 In fact a complex (Dirac) fermion can be “treated like” (dual to) a boson; this is bosonization.



(e) For real fermions, there is an additional reality condition:
U= = (51)
The canonical quantization still holds without the extra adjoint, same as the 2-point function:

zZ—w

(¥i(2) 5 (w)) = (52)

Similar holds for J;; = :4;%;: and its OPE, but we no longer need to distinguish upper/lower

indices; we have:

b+ 0ubie —Oudu(0) 4 6 in(0) + 855 Tu(0) — 80T
T(2) Da(0) ~o 20 Oty =0 n0) O ylO0) % yuehul0) = 0 @) 5
[(Jij)0s (Jrt)o] = =i (Jj1)0 + du(Jjk)o + 0k (Ji)o — 850(Jik)o (54)

This is precisely the o(n) algebra. |



