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1 Read Polchinski Sections 1.3 and 1.4:

Read, mostly understood. □

2 Spinning Closed String in AdS Space:

For a classical spinning string, we have Nambu–Goto action:

SNG = −T
ˆ

dτ dσ
√
−det γab, γab = Gµν∂aX

µ∂bX
ν (1)

Here Gµν is the spacetime metric. γab can be treated as the induced metric on the worldsheet.

In AdS space we have:

ds2 = R2
(
− cosh2ρdt2 + dρ2 + sinh2ρdΩ2

)
(2)

Where dΩ2 is the metric of a unit (d−2)–sphere Sd−2. For convenience let’s define unit Sd−2 metric
G1

ij , and raise or lower the i, j, · · · indices using G1
ij instead of Gij , i.e.,

G1
ij = Gij/

(
R2 sinh2ρ

)
, i, j = 2, · · · , d− 1 (3)

Furthermore, we consider the special case that the closed string is folded, like a rubber band
stretched along a line; in this case we can choose the worldsheet parameter (τ, σ) = (t, ρ) while
Ω = Ω(t, ρ) = Ω(τ, σ), which leads to the following decomposition:

∂aX
µ = δµa + δµi ∂aΩ

i, a = 0, 1, i = 2, · · · , d− 1, (4)

γab = Gµν ∂aX
µ∂bX

ν

= Gab +Gij ∂aΩ
i ∂bΩ

j

= Gab +R2 sinh2ρG1
ij ∂aΩ

i ∂bΩ
j

= R2

{( − cosh2ρ

1

)
+ sinh2ρ

(
(∂aΩ)2 ∂aΩ · ∂bΩ

∂bΩ · ∂aΩ (∂bΩ)2

)}
(5)

Here ∂aΩ · ∂bΩ ≡ ∂aΩi ∂bΩi ≡ G1
ij ∂aΩ

i ∂bΩ
j , and we have:

det γab = (R2)2
{

sinh4ρ det (∂aΩi∂bΩi)

+ sinh2ρ
(
(∂aΩ)

2 − (∂bΩ)
2 cosh2ρ

)
− cosh2ρ

}
,√

−det γab = R2
{

cosh2ρ− sinh2ρ
(
(∂aΩ)

2 − (∂bΩ)
2 cosh2ρ

)
− sinh4ρ det (∂aΩi∂bΩi)

}1/2
(6)

Mark the end points of the string with ρ = r(t), then the total length of such closed folded string
is ℓ = 4r. We then have:

S = −4TR2

ˆ
dt
ˆ r

0

dρ
√

cosh2ρ− sinh2ρ
(
(∂aΩ)2 − (∂bΩ)2 cosh2ρ

)
− sinh4ρ det (∂aΩi∂bΩi) (7)
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Further simplification comes from the fact that, due to rotational symmetry, the string’s motion
can be restricted in a plane where its position is characterized by some angle θ = Ωi0 ∈ {Ωi}i. In
this case other angle parameters Ωi|i ̸=i0 = 0, and the action is further reduced to:

S = −4TR2

ˆ
dt
ˆ r

0

dρ
√

cosh2ρ− sinh2ρ
(
(∂aθ)2 − (∂bθ)2 cosh2ρ

)
=

ˆ
dt
ˆ r

0

dρL, (8)

L = −4TR2

√
cosh2ρ− ω2 sinh2ρ, ω = ∂tθ, ∂ρθ = 0 (9)

We consider the special solution θ = ωt, while in general the endpoint r = r(t) could be dynamical;
variation of the action w.r.t. r(t) gives1:

0 = δS = −4TR2

ˆ
dt

r+δrˆ

r

dρ
√

cosh2ρ− ω2 sinh2ρ = −4TR2

ˆ
dt

√
cosh2r − ω2 sinh2r δr , (10)

ω2 =
cosh2r

sinh2r
= coth2r (11)

Note that if ω is constant, then r must be fixed by (11). Taking θ as the only dynamical variable,
it is then straight-forward to write the energy E and angular momentum J for such folded closed
string:

ω = θ̇, Π =
∂L
∂ω

= 4TR2 ω sinh2ρ√
cosh2ρ− ω2 sinh2ρ

, (12)

J =

ˆ r

0

dρΠ = 4TR2

ˆ r

0

dρ ω sinh2ρ√
cosh2ρ− ω2 sinh2ρ

, (13)

E =

ˆ r

0

dρ (Πω − L) = 4TR2

ˆ r

0

dρ cosh2ρ√
cosh2ρ− ω2 sinh2ρ

, (14)

In the large string limit, r →∞, ω = coth r → 1. Expand in terms of ϵ = ω− 1 > 0, we find that
r = 1

2 ln
(
1 + 2

ϵ

)
∼ 1

2 ln 2
ϵ , or alternatively, e2r · ϵ ∼ 2. With some help from Mathematica™, we get:

E − J = 4TR2

ˆ r

0

dρ cosh2ρ− ω sinh2ρ√
cosh2ρ− ω2 sinh2ρ

= 4TR2

ˆ r

0

dρ
(
1 +

ϵ2

8
sinh2(2ρ) +O

(
ϵ3
))

= 4TR2

(
r
(
1− ϵ2

16
+O

(
ϵ3
))

+O(1)
)

=

(
2TR2 ln 2

ϵ

)(
1− ϵ2

16
+O

(
ϵ3
))

∼ 2TR2

(
ln 2

ϵ

)
(15)

Similarly, J ∼ 4TR2

ˆ r

0

dρ sinh2ρ ∼ TR2
(
2
ϵ

)
, this gives:

E − J ∼ 2TR2 ln J

TR2
(16)

■

1 The above reasoning is confirmed in e.g. arXiv:hep-th/0204051.

https://arxiv.org/abs/hep-th/0204051
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3 Special Conformal Transformations:

xµ
K(a)7−−−−→ x̃µ =

xµ + x2aµ

1 + 2a · x+ a2x2
(17)

(a) Under special conformal transformation K(a), metric δµν 7→ gµν while:

gαβ dx̃α dx̃β = δµν dxµ dxν , gαβ = δµν
∂xµ

∂x̃α
∂xν

∂x̃β
(18)

To calculate this we have to know the inverse transformation x = K−1(a) x̃. First, notice the
following decomposition2 of K(a):

x̃µ =
xµ

x2 + aµ

1
x2 + 2a·x

x2 + a2
=

xµ

x2 + aµ∣∣xµ

x2 + aµ
∣∣2 , (19)

i.e. K(a) : xµ
I7−−→ xµ

x2
T (a)7−−−−→ yµ =

xµ

x2
+ aµ

I7−−→ x̃µ =
yµ

y2
, (20)

i.e. x̃µ

x̃2
=
yµ

y2

/
1

y2
= yµ =

xµ

x2
+ aµ (21)

From (21), we see that the transformation parameter aµ composes linearly: K(b)K(a) = K(a+b),
therefore K−1(a) = K(−a), and we have:

xµ = K(−a) x̃µ =
x̃µ − x̃2aµ

1− 2a · x̃+ a2x̃2
=
ỹµ

y2
, (22)

∂xµ

∂x̃α
=
∂xµ

∂ỹσ
∂ỹσ

∂x̃α
=

(
∂

∂ỹσ
ỹµ

ỹ2

)
∂

∂x̃α

(
x̃σ

x̃2
− aσ

)
=

(
∂

∂ỹσ
ỹµ

ỹ2

)(
∂

∂x̃α
x̃σ

x̃2

)
=

(
ỹ2δµσ − 2ỹµỹσ

)(
x̃2δσα − 2x̃σx̃α

)/(
ỹ4x̃4

)
,

(23)

gαβ
(18)
==== δµν

(
ỹ2δµσ − 2ỹµỹσ

)(
x̃2δσα − 2x̃σx̃α

)(
ỹ2δνρ − 2ỹν ỹρ

)(
x̃2δρβ − 2x̃ρx̃β

)/(
ỹ8x̃8

)
∑

µ,ν
===== ỹ−4δσρ

(
x̃2δσα − 2x̃σx̃α

)(
x̃2δρβ − 2x̃ρx̃β

)/
x̃8∑

σ,ρ
===== ỹ−4x̃−4δαβ

(24)

We see that gαβ = f(x) δαβ , with coefficient:

f(x) = ỹ−4x̃−4 (20)
====

x4

x̃4
(21)
====

(
1 + 2a · x+ a2x2

)2 (25)

□ (a)

(b) In 2D with z = x1 + ix2, xµ ∼ (z, z̄), we see from (21) that:

xµ

x2
∼ z

|z|2
=

1

z̄
7−→ 1

z̄
+ a, i.e. z 7−→ w =

1
1
z + ā

=
z

1 + zā
(26)

Expand in the ā→ 0 limit, we find that w = z (1− zā− · · ·) ∼ z − z2ā, i.e. it is generated by:

Kz̄ = −z2∂z = −z2∂, ∂ ≡ ∂z (27)

2 See Di Francesco et al, and also github.com/davidsd/ph229.

https://github.com/davidsd/ph229
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Note that when considering non-holomorphic functions, we have to consider (z, z̄) as two inde-
pendent variables; hence the anti-holomorphic transformation z̄ 7→ w̄ = z̄

1+z̄a ∼ z̄ − z̄2a provides
another degree of freedom, namely:

Kµ ∼
(
Kz̄ = −z2∂, Kz = −z̄2∂̄

)
, (28)

∂ ≡ ∂z, ∂̄ ≡ ∂z̄

Similarly, for translation z 7→ z + a and its conjugate, we have Pµ ∼
(
Pz = ∂, Pz̄ = ∂̄

)
. However,

dilation and rotation are both encoded in a complex rescaling z 7→ λz, λ = reiθ ∈ C; we have:

z 7→ λz, λ = reiθ ∈ C,
δr ←→ D = z ∂ + z̄ ∂̄,

δθ ←→ M = i
(
z ∂ − z̄ ∂̄

)
,

(29)

In summary, we have spanR {Pµ,Kµ, D,M} = so(3, 1) generating the “global” transformation
subgroup of the 2D conformal group; here, the so(3, 1) boost is a linear combination3 of Pµ and Kµ.
More specifically, in 2D any holomorphic or anti-holomorphic function gives a conformal transfor-
mation, hence the (classical) 2D conformal group is generated by:

ℓm = zm+1∂, ℓ̄m = z̄m+1∂̄, m ∈ Z (30)

i.e. the Witt algebra (or Virasoro algbera Virc with c = 0). It is clear that a (complexified) so(3, 1)

lives inside Virc, i.e.,

so(3, 1)C = spanC {Pµ,Kµ, D,M}
= spanC

{
ℓm, ℓ̄m

∣∣m = 0,±1
}
= sl(2,R)C ⊕C sl(2,R)C ⊂ Virc

(31)

■

4 bc CFT:

S =
1

2π

ˆ
d2z b ∂̄c (32)

Stress tensor of a theory can be obtained via variation over the metric, or equivalently, over the
fields ϕi with δϕ induced by some local spacetime translation xµ 7→ xµ + δxµ , δxµ = ϵ(x) aµ. Here
ϵ(x) is any compactly supported bump function, centered around some point x0.

In 2D, we have µ = z, z̄; for ϕ(z, z̄) with conformal weight (h, h̄), consider z 7→ z′, z̄ 7→ z̄′.
For convenience, let’s first consider a generic variation δz = ϵ(z, z̄) before restricting to spacetime
translation; we have:

ϕ′(z′, z̄′) =
(dz′

dz

)−h(dz̄′
dz̄

)−h̄

ϕ(z, z̄), (33)

δ̃ϕ =
(
−h∂ϵ− h̄ ∂̄ϵ̄

)
ϕ, (34)

δϕ = δ̃ϕ− ∂ϕ

∂xµ
δxµ =

(
−h∂ϵ− h̄ ∂̄ϵ̄

)
ϕ− ϵ ∂ϕ− ϵ̄ ∂̄ϕ, (35)

Here we use δ̃ϕ to denote the “internal” variation related to the conformal weights.

3 See e.g. github.com/davidsd/ph229.

https://github.com/davidsd/ph229
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Note that ϕ = b, c are anti-commuting Grassmann numbers, variation of the action gives:

δS [b, c, δb , δc] =
1

2π

ˆ
d2z

(
δb ∂̄c+ b ∂̄ δc

)
=

1

2π

ˆ
d2z

(
−∂̄c δb− ∂̄b δc

)
+

1

2π

ˆ
d2z ∂̄(b δc) (36)

For unknown b, c and arbitary δb , δc, the second term is reduced to a boundary term at infinity and
can be dropped; imposing δS = 0 gives the equation of motion (EOM): ∂̄b = ∂̄c = 0.

On the other hand, for on-shell b, c and compactly supported ϕ = δb , δc given in (35), the first
term in (36) vanishes while δS0 = 0 still holds; this gives:

0 = δS0 =
1

2π

ˆ
d2z ∂̄(b δc) =

1

2π

ˆ
d2z ∂̄

(
−(1− λ) bc ∂ϵ− b ∂c ϵ

)
=

1

2π

ˆ
d2z

(
−(1− λ) bc ∂̄∂ϵ− b ∂c ∂̄ϵ

) (37)

Here we’ve distributed the ∂̄ operator and dropped all terms that vanish automatically by EOM.
Next we shall collect the ∂ϵ, ∂̄ϵ terms; integrating by parts on the first integrand gives:

0 = δS0 =
1

2π

ˆ
d2z

(
(1− λ) ∂(bc) − b ∂c

)
∂̄ϵ

=
1

2π

ˆ
d2z

(
(∂b) c− λ∂(bc)

)
∂̄ϵ

= − 1

2π

ˆ
d2z ϵ(z, z̄) ∂z̄

(
(∂b) c− λ∂(bc)

) (38)

Notice that we have obtained a conserved current using a generic δz = ϵ(z, z̄), δz̄ = ϵ̄(z, z̄); by
setting ϵ = ϵ(z), we get a energy momentum tensor4:

T (z) = : (∂b) c : − λ∂(: bc :) (39)

Normal ordering is added manually to remove singular terms.

To compute TT OPE, we need the OPE of b(z) c(0); this is obtained by examining the following
path integral, which is zero since the integrand is a total functional derivative:

0 =

ˆ
DbDc

δ

δϕ

(
e−S ψ

)
(40)

Taking ϕ, ψ = b, c, this generates operator equations such as ∂̄ b(z)c(0) = 2πδ2(z, z̄). Note that
∂̄( 1z ) = 2πδ2(z, z̄), which gives:

b(z) c(0) ∼ c(z) b(0) ∼ 1

z
, b(z) b(0) ∼ 0 ∼ c(z) c(0) (41)

With the bc OPE in hand, the TT OPE is computed directly with brute force, by repeatedly
applying Wick’s theorem. This gives:

T (z)T (0) ∼ −6λ
2 + 6λ− 1

z4
+ · · · (42)

In general we have −6λ2 + 6λ− 1 = c
2 ; for λ = 2 this gives c = −26. ■

4 Note that the energy momentum tensor obtained in this way is generally not unique: it can be off by a boundary term
or any term that vanish on-shell; see Luboš’ comment at physics.stackexchange.com/a/96100, also arXiv:1601.
03616. However, it is possible to fix this redundancy by considering Tb OPE and match its conformal dimension. I
would like to thank 林般 for pointing this out.

https://physics.stackexchange.com/a/96100
https://arxiv.org/abs/1601.03616
https://arxiv.org/abs/1601.03616
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5 Free Fermion CFT:

S =

ˆ
d2z ψi ∂̄ψ

i, ψi = ψ∗
i , ψi = ψi(z) (43)

(a) Mode expansion of such chiral fermion is given by:

ψi =
∑

k∈Z+ 1
2

bik

zk+
1
2

, bik =
1

2πi

∮
dz zk− 1

2ψi (44)

Canonical quantization is achieved by simply imposing anti-commutation relations; this is justified
by mapping the system onto a cylinder, then bik’s indeed map to modes on the spatial circle5. The
only non-zero commutators are: {

bik, b
j†
q

}
= δk+q,0 δ

j
i (45)

This gives the only non-zero 2-point functions:

〈ψi(z)ψ
j(w)〉 =

∑
k,q∈Z+ 1

2

1

zk+
1
2

1

wq+ 1
2

〈bikbj†q 〉

=
∑

k,q∈Z+ 1
2

1

zk+
1
2

1

wq+ 1
2

〈0|
{
bik, b

j†
q

}
|0〉 = δji

z − w

(46)

Note that bik |0〉 = 0, ∀ k ≥ 1
2 .

(b)(c) Combining two ψ expansions gives the mode expansion of J j
i = :ψi(z)ψ

j(z) : , namely:

J j
i (z) =

∑
k∈Z

(J j
i )k
zk+1

, (J j
i )k =

∑
q∈Z+ 1

2

: biq b
j†
k−q : (47)

It is in fact more convenient to obtain the JJ OPE first, and then use it to find the [J0, J0] mode
commutator6; note that ψi(z)ψ

j(w) contraction gives δji
z−w , we have:

J j
i (z) J l

k (0) ∼
δliδ

j
k

z2
+
δjkJ

l
i (0)− δliJ

j
k (0)

z
, (48)[

(J j
i )0, (J

l
k )0

]
=

1

(2πi)2

∮
0

dw
∮
w

dz J j
i (z) J l

k (w) = δli (J
j

k )0 − δjk (J
l

i )0 (49)

(d) Similar to bc CFT, we have:

T (z) =
1

2

(
:ψi ∂ψ

i : − :∂ψi ψ
i :
)
, T (z)T (w) ∼ n/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(50)

With each (complex) field contributing 1
2 × 2 central charge7.

5 This can be proven rigorously by considering operator equations like in the bc CFT problem.
6 I would like to thank 谷夏 for providing this hint.
7 In fact a complex (Dirac) fermion can be “treated like” (dual to) a boson; this is bosonization.
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(e) For real fermions, there is an additional reality condition:

ψi = ψ⋆
i = ψi (51)

The canonical quantization still holds without the extra adjoint, same as the 2-point function:

〈ψi(z)ψj(w)〉 =
δij

z − w
(52)

Similar holds for Jij = :ψiψj : and its OPE, but we no longer need to distinguish upper/lower
indices; we have:

Jij(z) Jkl(0) ∼
−δikδjl + δilδjk

z2
+
−δikJjl(0) + δilJjk(0) + δjkJil(0)− δjlJik(0)

z
(53)

[(Jij)0, (Jkl)0] = −δik(Jjl)0 + δil(Jjk)0 + δjk(Jil)0 − δjl(Jik)0 (54)

This is precisely the o(n) algebra. ■


