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1 Introduction

Relativity and quantum mechanics are the two cornerstones of modern physics. At-
tempted unions of these two theories have produced some highly non-trivial results in the-
oretical physics. Most surprisingly, by considering classical limits of quantum effects in
general relativity, we can reveal some new structures of classical spacetime. Witten’s proof
of the positive energy theorem [1] is a major example of such treatment.

In general relativity, matter curves spacetime, and its effects are captured by Einstein’s
equations. The positive energy conjecture claims that “regular” matter1 should give
rise to spacetime with a positive energy, and the energy of spacetime is zero iff. it is flat [2].

1 In theory, there can be “exotic” matter, however unlikely in reality. For example, matter with negative
mass can be used to create traversable wormhole.
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This is a statement about purely classical general relativity. It feels natural in physics,
but is extremely hard to prove in a rigorous way. The first complete proof is given by Schon
and Yau [3] using techniques from geometric analysis. Witten’s proof, on the other hand,
relies heavily on the existence of spinor fields on a given spacetime. Although it is inspired
by ideas from quantum mechanics and even supersymmetry, the proof by itself is still fully
contained in general relativity.

Spinor field is a natural consequence of quantum field theory, and can be treated semi-
classically by introducing additional spin structure on the spacetime M. This will be the
focus of our following discussions.

As an introductory review, we try to illustrate the geometric aspects of spin structure
and its role in Witten’s proof of the positive energy theorem. To avoid technicalities of spinor
analysis, we will only sketch some main ideas of the proof. For a more detailed treatment,
see [1, 2] for physicists and [4, 5] for mathematicians.

1.1 Review of General Relativity and Conventions

General relativity is formulated on a pseudo-Riemannian (Lorentzian) manifold (M, g).
M is locally identical to R3,1, here R3,1 ≊ R×R3 with the first component being the time
coordinate. From now on we will use the symbol “≊” to denote diffeomorphism, or diffeo
for short. However, when there is extra structure involved (e.g. group product), “∼=” will
stand for isomorphism, and we will use “≊” for mere diffeo.

Metric tensor can then be pointwise diagonalized:

gµν = ηab e
a
µe

b
ν +O

(
x2

)
, ηab ∼ diag(−1, 1, 1, 1) ∼ flat (1.1)

Here µ, ν, · · · = 0, 1, 2, 3 denotes tensor components w.r.t. local coordinates, while a, b, · · · =
0, 1, 2, 3 denotes components w.r.t. a orthonormal frame field2 or vierbein:{

θa(x) = eaµ(x)dxµ
}
a=0,1,2,3

←→
{
ea(x) = e µ

a (x)
∂

∂xµ

}
a=0,1,2,3

(1.2)

It is often helpful to think ofM as the foliation / time-evolution of a spacelike (Rieman-
nian) codimension-1 hypersurface Σ along a time direction3.

Coordinates on Σ is indexed with i, j, · · · = 1, 2, 3. In fact, we assume that:

M(t1,t2)
∼= (t1, t2)× Σ ∼= R× Σ (1.3)

Where t ∈ (t1, t2) is some global time coordinate restricted in an interval.
Following the usual approach of Riemannian geometry, we can similarly define Riemann

curvature Rλ
ρµν , Ricci tensor Rµν and scalar curvature R. Einstein’s equations of relativity

2 This is basically Cartan’s moving frame formalism.
3 In fact, global existence of such time slice Σ (so-called Cauchy slice) as an initial value surface is not

automatically guaranteed, but relies on the causal structure of M, see [6]; but locally we can always
assume such structure.
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is then neatly organized into the following covariant tensorial expression4:

Rµν −
1

2
gµνR = 8πTµν (1.4)

The left-hand side (LHS) of the equation is purely geometric, while the right-hand side
(RHS) is proportional to the symmetric energy–momentum stress tensor Tµν , which describes
matter distribution in spacetime. In general, we expect natural matter on the RHS will lead
to well-behaved spacetime on the LHS; positive energy theorem is one exact case of such
observation.

2 Positive Energy Theorem

Although Witten’s proof relies on insights from quantum mechanics, the statement of
positive energy theorem is purely classical (in the sense that it does not depend on quantum
mechanics)5. Here we summarize the main components of the theorem.

2.1 Constraints on Manifold and Total Energy

As is illustrated in (1.3), the main object to study can be reduced to a usual Riemannian
manifold Σ. To make things easier, we shall further assume that Σ is asymptotically flat,
i.e. Σ has finitely many non-compact asymptotic ends6 Σℓ ⊂ Σ. Asymptotic flatness is then
captured by the asymptotic behavior the metric: gij ∼ δij .

Definition (Asymptotic Flatness) A Riemannian 3–fold Σ ⊂ M as a hyper-
space in spacetime is asymptotically flat when it has the following decomposition:

Σ ∼= Σ0 ∪
∐
ℓ̸=0

Σℓ (2.1)

4 Here we have set Newton’s constant GN = 1 and cosmological constant Λ = 0. Proof of the Positive
Energy Theorem with Λ 6= 0 is still incomplete to this day, and still an important field of research; see
e.g. [7].

5 There are some variations between statements in the literature; here we will follow Straumann’s simplified
version [2] and Witten’s original work [1], with mathematical supplements from Parker et al [4].

6 It might be helpful to visualize this as the spatial “end” of the world, 世界尽头。This poetic translation
is due to X. J. Xie.



2.1 Constraints on Manifold and Total Energy 4

Where {ℓ}: finite indices, and:

• Σ0: compact;
• {Σℓ}ℓ: asymptotic ends, each diffeo to the complement of a contractible com-

pact set in R3;
• Under such diffeo Σℓ → R3, the metric g of every end Σℓ ⊂M is asymptoti-

cally flat, i.e.

gij = δij + hij ,

hij ∼ O
(
1
r

)
, ∂khij ∼ O

(
1
r2

)
, ∂l∂khij ∼ O

(
1
r3

) (2.2)

• The second fundamental form K of Σℓ ⊂M is also constrained:

Kij ∼ O
(

1
r2

)
, ∂kKij ∼ O

(
1
r3

)
(2.3)

In general, it is quite difficult to define a total energy for some arbitrary spacetime M.
However, when asymptotic flatness is imposed, it can be treated as a symmetry of the ends
Σℓ. Energy of the spacetime7 can then be defined as the conserved charge corresponding to
the time translation Killing vector field ξ = ∂t, or more explicitly, by integrating the Noether
current of such symmetry on Σℓ, as is done in Noether’s theorem. See [8] for a comprehensive
review; for a covariant treatment, see [9, 10].

In fact, the Noether current can be further shown to be exact: dQξ, then by Stokes’
theorem, energy as a conserved charge can be further reduced to some integral along the
“asymptotic boundaries” (plus some extra boundary terms, shown below in “· · · ”) [10, 11]:

Eℓ = P 0(Σℓ) =

ˆ
Σℓ

dQξ +

ˆ
S2
ℓ

(· · · ) =
ˆ
S2
ℓ

(
Qξ + · · ·

)
,

S2
ℓ = “ ∂Σℓ” ⊂ Σℓ ⊂ R3, ξ = ∂t

(2.4)

Here S2
ℓ is a sphere with radius R → ∞ 8. This is the so-called ADM energy [12]. In fact,

we can take ξ = ∂µ, µ = 0, 1, 2, 3 and obtain the ADM 4–momentum [2]:

Pµ
ℓ ≡ P

µ(Σℓ) ' −
1

16π

ˆ
S2
ℓ

√
|g|ωρσ ∧ ⋆

(
dxρ ∧ dxσ ∧ dxµ

)
, ωρσ = Γρµσ dxµ = gρλΓ

λ
µσ dxµ

(2.5)
Where ωρσ is the Levi-Civita connection form. This can be further expanded in induced
metric (1st fundamental form) gij and 2nd fundamental form Kij when R→∞, which gives
the explicit expressions below.

7 This includes contributions from gravitational field and matter field.
8 Discussions here are clearly not mathematically exact (hence the quotation marks), but can be made

rigorous by taking a cutoff geometry M′ with (true) boundary ∂M′ =
⨿

ℓ̸=0 Sℓ, and then prove that the
end result is in fact cutoff independent.
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Definition (ADM Energy–Momentum) Total ADM energy–momentum Pµ
ℓ of

an asymptotically flat end Σℓ ⊂ Σ ⊂M is defined in the following explicit forma:

Eℓ ≡ P 0
ℓ = lim

R→∞

1

16π

ˆ
S2
ℓ

(∂jgij − ∂igjj)dΩi ,

P k
ℓ = lim

R→∞

1

16π

ˆ
S2
ℓ

2 (Kik − δikKjj)dΩi ,

(2.6)

Where R is the radius of 2–sphere S2
ℓ ⊂ Σℓ

∼= R3,

• gij is the induced metric (1st fundamental form),
• Kij is the 2nd fundamental form on Σℓ

∼= R3,

and repeated indices are summed over.

a Note that the Eℓ given in [4] has a typo. Check [1, 6] for the correct expression.

2.2 Energy Conditions

On the other hand, there are physical constraints on the stress tensor Tµν , which describes
local energy–momentum density. Physical constraints on Tµν are called energy conditions
(EC), see Wald [6] or [13] for some detailed discussions. Here we assume the dominant EC
(DEC), which requires that mass / energy can never be observed to be flowing faster than
light.

Specifically, a non-rotating observer moving along some path x(τ) ∈M is characterized
by a local velocity 4–vector vµ = x′(τ) = TxM. The observed energy–momentum flow pµ

and energy density ρ w.r.t. vµ is obtained by the contraction9:

pµ = −vνTµν ,

ρ = −vνpν ,
vν : timelike, i.e. vνvν = gµνv

µvν < 0 (2.7)

pµ should be a timelike or lightlike (non-spacelike) 4–vector, i.e. pµpµ ≤ 0, ∀ vµ : timelike.
Also, matter density should always be non-negative10, i.e. ρ ≥ 0. These two constraints can
be equivalently captured by simple restrictions of Tµν components [2], shown below.

9 Minus signs in (2.7) is due to the ηab ∼ (−1,+1,+1,+1) metric convention, in this case va ∼ (1, 0, 0, 0) 7→
va ∼ (−1, 0, 0, 0), therefore we need an extra sign flip to get the correct sign of energy.

10 The condition ρ ≥ 0 by itself is also a common energy condition, called the weak EC (WEC).
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Definition (Dominant Energy Condition) The symmetric stress tensor Tµν
satisfies the dominant energy condition (DEC), iff.

T 00 ≥ |Tµν |, T 00 ≥
√
−T0iT 0i (2.8)

Which is equivalent to ρ ≥ 0, pµpµ ≤ 0, where ρ, pµ is defined in (2.7).

2.3 Statement of the Theorem

With the above preparation, we can now state the positive energy theorem in a mathe-
matically precise manner.

Theorem (Positive Energy Theorem) For a spacelike hypersurface Σ ⊂ M
that:

• is asymptotically flat, Σ ∼= Σ0 ∪
∐

ℓ̸=0Σℓ, and
• the dominant energy condition holds;

Then the total energy-momentum Pµ
ℓ is a future directed timelike or lightlike (non-

spacelike) vector on each end Σℓ, i.e.

Eℓ − |Pℓ| ≡ Eℓ −
√
Pℓ,iP

i
ℓ ≥ 0 (2.9)

Furthermore, if Eℓ = 0 for some ℓ then Σ has only one end and M is flat along Σ,
i.e. M is flat in a neighborhood of Σ, as is described in (1.3).

The proof of the positive energy theorem and its various generalizations has been the
pursuit of many mathematicians and physicists, as is described in [1]. Witten’s proof pro-
vides an attracting alternative to the first proof [3], and is much more approachable for
physicists.

As is mentioned before, Witten’s proof is based on the assumption that there is matter
described by some spinor field ψ on the manifoldM. This is not so surprising to physicists, as
spinors are the mathematical descriptions of fermions (incl. electrons, protons, and basically
all “matter” in the usual sense).

The use of spinor is also suggested by considerations involving supersymmetry (SUSY) 11,
as is discussed by Witten [1]. In supersymmetric gravity (supergravity, SUGRA), the energy
is formally written as the sum of squares of Hermitian supercharges H = 1

h̄

∑
αQ

2
α, which

is formally positive. Witten’s proof is then found by designing a classical limit of SUGRA.

11 Basically, SUSY is a new spacetime symmetry that relates spinor with their vector partners, and tries
to describe them in a single framework. This simple idea has generated numerous developments in both
math and physics.
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Besides physical considerations, spinors are also fascinating objects in geometry. In the
following part of our review we will focus the physical and geometric properties of spinor
and spin structure, and give a very brief sketch of Witten’s proof at the end of this review.

3 Spinor from Quantization12

This section serves as a non-technical introduction to spinor for a general audience. We
follow Weinberg [14] for this informal discussion about quantization.

Particles have spin. Classically, spin is described by a local 3-vector si ∈ TxΣ. This
vector can be naïvely promoted to a 4-vector in its rest frame13:

si −→ sµ ∼ (0, si), rest frame (3.1)

In quantum mechanics, particle ceases to be a localized entity; rather, it is described by
a wave function spread across the spacetime. Furthermore, in field theory, a particle is
considered as an excitation of some field, just like a ripple in the pond. Therefore, instead
of localized vectors, we should consider vector fields, i.e. sections of the tangent bundle:

sµ ∈ TxM −→ ϕµ ∈ Γ(M,TM) : M→ TM (3.2)

Another feature of the wave function description is that there is always a Hilbert space H
of wave functions corresponding to the actual spacetime manifoldM. Quantum mechanical
evolution of a system is in fact formulated in its Hilbert space, rather than its spacetime
manifold. Symmetries of spacetimeM lead to symmetries on the Hilbert space; in fact, the
Hilbert space H can be seen as a representation of the spacetime symmetries.

For a flat spacetime, 4–momentum pµ and (relativistic) angular momentum tensor jµν
are symmetry generators, i.e. Killing vector fields of the spacetime; with the standard or-
thonormal bases of R3,1, we have:

pµ = ∂µ, jµν = xµ∂ν − xν∂µ (3.3)

Killing vector fields as derivations form a closed Lie algebra; for R3,1 this is the so called
Poincaré algebra, here denoted as the Lie algebra iso(3, 1) of Lie group ISO+(3, 1), where “ I ”
stands for inhomogeneous, i.e. with translations, and “+ ” denotes its identity component.
The finite transformation generated by pµ, jµν is exactly the Lorentz transformation. This
shows that a (local) change of coordinates is interpreted in physics as switching between
reference frames.

12 This section is far too physical, therefore inappropriate in a report for differential manifold, and deserves
to be dumped into an appendix. However, some necessary concepts are introduced in this section, so we
will leave it here for now.

13 In this review particles are always assumed to move slower than light, for simplicity. Therefore, it is possible
to change the coordinates to follow a particle in its comoving rest frame. Most of our arguments here can
be generalized to particles moving at the speed of light, but with considerable amount of subtleties.
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Quantum mechanically, pµ, jµν is represented (literally and mathematically) as linear
operators Pµ, Jµν on Hilbert space H,

pµ −→ Pµ, jµν −→ Jµν (3.4)

Intuitively, particles are characterized with its energy14 H = P 0, momentum Pi = P i and
their relations: H = H(P). Conveniently, Pµ’s commute with each other; therefore in field
theory, particles are defined by simultaneous eigenstates of Pµ’s.

For a given Lie algebra and its representation, we can construct Casimir invariants
which commute with all generators, therefore are invariant (or conserved) under symmetry
transformation. Naturally, we expect them to describe intrinsic properties of a particle,
which is not affected by a change of coordinates.

For Poincaré algebra in (3 + 1) dimensions, there are exactly two linearly independent
Casimirs15:

M2 = −PµP
µ, W 2 =WµW

µ, Wλ = −1

2
ϵλµνρJ

µνP ρ (3.5)

Here ϵλµνρ is the totally anti-symmetric Levi-Civita symbol, and the minus signs are merely
conventional. Wλ is the Pauli–Lubanski pseudovector.

Physical states are required16 to have M2 > 0, and states of the same eigenvalue M =

m ≥ 0 form a sub-representation (submodule) of ISO+(3, 1) acting on H. Different species
of particles are therefore distinguished by different values of M = m. Physically, m is
naturally interpreted as the mass of a particle. Similarly, W 2 should characterize another
intrinsic property of a particle; let’s further define sub-species of particle labeled by different
eigenvalues of W 2. Assume m > 0 for simplicity, then in the rest frame of some particle
with constant eigenvalue W 2, we have Pµ = pµ ∼ (p0, 0) = (m, 0),

Wλ = −1

2
ϵλµνρJ

µνP ρ = −1

2
ϵλµν0J

µνm ∼ (0,Wk), rest frame, (3.6)

Wk =
1

2
mϵijkJ

ij = mJk = msk (3.7)

Where Jk = 1
2 ϵijkJ

ij is the angular momentum operator, which is the Hilbert space rep-
resentation of rotation generator: jij = xi∂j − xj∂i = ∂

∂θk
, here θk parameterizes rotation

angle around the k–th axis. Physically, spin is exactly the intrinsic angular momentum of
a particle: Jk = sk, therefore the spin 4–vector shall be rigorously defined as the eigenvalue
of Pauli–Lubanski pseudovector.

To sum up, assuming that there is no extra symmetry beyond Poincaré iso(3, 1), particles
can be completely reduced and classified by representations of iso(3, 1) on H. We have:

Pµ |pµ, sµ〉 = pµ |pµ, sµ〉 , Jµ |pµ, sµ〉 ≈ sµ |pµ, sµ〉 , Jµ =
Wµ

m
(3.8)

Here |pµ, sµ〉 ∈ H denotes a particle state in the Hilbert space.

14 Conventionally, H = P 0 serves as the energy operator, i.e. Hamiltonian, while E denotes its eigenvalue.
15 For Poincaré algebra in higher dimensions, i.e. iso(d, 1) with d ≥ 4, there are more Casimirs, see e.g. [15].

Unfortunately, we (i.e. authors of this review) haven’t found any reference about the physical interpretation
of these higher order Casimirs.

16 By one of the fundamental postulates of relativity, there is no faster-than-light travel, which implies
m2 = −pµp

µ ≥ 0. This is represented in the Hilbert space as M2 = −PµP
µ ≥ 0.
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However, the above notation is not quite exact (as is indicated by the “≈ ” sign). Note
that Wµ’s do not commute, hence it is impossible to find simultaneous eigenstates for all
four Wµ’s. The best we can manage is to pick a special Wµ, say µ = z in the rest frame,
and then index the eigenstates with eigenvalues of Jz = Wz

m . (3.8) is then modified to be:

Pµ |pµ, sz〉 = pµ |pµ, sz〉 , Jz |pµ, sz〉 = sz |pµ, sz〉 (3.9)

The action of Wµ on a resting particle is the representation of stabilizer subgroup17

SO(3) ⊂ ISO+(3, 1), which keeps pµ ∼ (m, 0) fixed. Since SO(3) is a compact Lie group,
according to Peter–Weyl theorem, its irreducible representations (irreps) are finite dimen-
sional. It is natural to define elementary particles as irreps, since they cannot be decomposed
further (physically or mathematically); hence sµ for an elementary particle can only take on
discrete values.

Therefore, the rigorous label of a particle state should be:

H ⊃ Hm,j 3 |m, pµ; j, sz〉 ≡ |pµ, sz〉 ,
pµp

µ = −m2, sz = −j,−j + 1, · · · ,+j, j ∈ Z+

(3.10)

Here m, j labels the representation Hm,j , which stays invariant under Poincaré transforma-
tions, while p, sz labels the state in such irrep. The allowed values of sz come from the
representation of SO(3).

Now we are finally prepared to embrace another quirk from quantum mechanics —
projective representation, which leads directly to the existence of spinors.

3.1 Projective Representation and Spinor

As mentioned before, in quantum mechanics the state and dynamics of a system is de-
scribed with a C–valued wave function Ψ(ξ), or equivalently an abstract state |Ψ〉 in Hilbert
space H. The variable ξ labels simultaneous eigenstate |ξ〉 of some Hermitian observables,
e.g. momentum Pµ and spin-z component W z. The set of all such eigenstates {|ξ〉} forms
an orthonormal18 basis of H.

Wave function Ψ(ξ) can be regarded as the projection of state Ψ onto the orthonormal
basis |ξ〉, i.e. Ψ(ξ) = 〈ξ |Ψ〉, where 〈·|·〉 is the Hermitian inner product. Here we adopt the
physics convention that 〈·|·〉 is C linear in its second entry, while conjugate-linear in its first
entry.

17 In physics literature this is the so-called Wigner’s little group.
18 Although mathematically imprecise, it is common in physics to treat distributions such as Fourier basis

{eikx}k∈R as “orthonormal”, with the modified orthonormal relations 1
2π

´
dx e−ik′xeikx = δ(k−k′), where

δ is the Dirac delta distribution. This can be made mathematically rigorous in functional analysis, hence
there is no need to worry.
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Projective representation arises from Born’s statistical interpretation of the wave func-
tion, which relates the probability of observed outcome with its wave function, namely,

|〈ξ |Ψ〉|2 ∼
(

Probability of observing state |Ψ〉 in eigenstate |ξ〉
)

(3.11)

This means that states differ by an overall phase eiα represents the same physical state,
i.e. eiα |Ψ〉 ∼ |Ψ〉. Mathematically speaking, the physical Hilbert space is actually the
projective space PH.

The projective nature of physical Hilbert space has two direct consequences. First,
representations of symmetries in Hilbert space should be unitary to preserve probability
|〈·|·〉|2, i.e.,

U : G→ U(H) ⊂ GL(H) (3.12)

Here U and U(·) stands for unitary representation and unitary group, respectively. Second,
since we do not require invariance of 〈·|·〉 but only its norm |〈·|·〉|, U need not be an “exact”
representation, but can differ by a phase; this is a so-called projective representation:

U(Λ′)U(Λ) = eiαU(Λ′Λ), Λ ∈ G (3.13)

At first, it seems that the extra phase adds great complexity to possible representations.
Fortunately, projective representations have been well understood in mathematics (even
before its quantum mechanical origin, e.g. by Schur [16] in 1911 for finite groups). In fact,
a projective representation can always be lifted to an ordinary representation, see e.g. [14,
17]. Generally, we have:

Theorem (Lifting Projective Representations) A unitary representation of
groupG on projective Hilbert space U : G→ U(PH) can always be lifted to a unitary
representation of its central extension G̃ on linear Hilbert space Ũ : G̃ → U(H),
i.e. the following diagram commutes:

G̃ G

U(H) U(PH)

π

Ũ U

Moreover, central extension G̃ of Lie group G can be constructed as follows:

1. Extension by discrete Zn, in this case G̃ is the covering group of G; the
maximal extension of this kind is naturally the universal covering of G, with
Zn = π1(G) its fundamental group. This kind of extension is topological and
does not change the corresponding Lie algebra, i.e. g = LieG = Lie G̃.

2. Extension by continuous U(1), which descends into a non-trivial central ex-
tension of its Lie algebra:

dπ : g̃ = Lie G̃ −→ g = LieG (3.14)
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g̃, G̃ therefore has an extra dimension generated by such U(1) subgroup.

For Poincaré symmetry, there is no need to consider central extension of the Lie algebra
iso(3, 1); in fact, representation of such Lie algebra central extension is always equivalent of
some representation of the original iso(3, 1), by a redefinition of basis19. However, ISO+(3, 1)

has non-trivial π1 due to its rotation subgroup SO(3); topologically,

ISO+(3, 1) ∼= R4 ⋊ SO+(3, 1) ≊ R4 × R3 × SO(3) ≊ R4 × R3 ×
(
S3/Z2

)
,

∼=: isomorphic as groups, ≊ : diffeo as manifolds
(3.15)

Where R4, R3 and SO(3) corresponds to translations Pµ, Lorentz boosts J0i = −J i0 and
spatial rotations Jk = 1

2 ϵijkJ
ij . Therefore, ISO+(3, 1) can be centrally extended by Z2 =

π1
(
ISO+(3)

)
.

Generally, We define spin group Spin(p, q) as the Z2 extension (double cover) of SO(p, q)20.
Note that Spin(p, q) is not always connected, and its identity component Spin+(p, q) is not
always simply connected21. However, for p > 2 > q ≥ 0, Spin+(p, q) is indeed simply con-
nected, therefore it’s the universal cover of SO+(p, q). For (3 + 1) dimensional spacetime
R3,1, we have the following diagram:

Spin(3, 1) Spin+(3, 1) ∼= SL(2,C) Spin(3) ∼= SU(2)

SO(3, 1) SO+(3, 1) SO(3)

π̃ /Z2 /Z2 π /Z2

All arrows in this diagram are homomorphic projections: the vertical downwards arrows are
Z2 covering maps, while the horizontal right arrows are projections onto subgroups.

19 See [14, 17]. A general criterion is given by Bargmann’s Theorem [18]; it states that every projective
representation of a connected, simply connected, finite-dimensional Lie group G̃ with Lie algebra second
cohomology H2(Lie G̃,R) = 0 can be simply lifted as a unitary representation, i.e. such G̃ is the “maximal”
extension.

20 More concretely, it can be explicitly constructed via Clifford algebra Cℓ(p, q).
21 For example, π1

(
Spin(2, 1)

)
= Z infinite cyclic, this gives rise to fractional spin s ∈ Q+ (anyons) in (2+1)

dimensions [19]. If we consider central extension of the Lie algebra, then the particle spin can even take
arbitrary s ∈ R+ values.
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For (3 + 1) dimensions, we have accidental isomorphisms:

Spin+(3, 1) ∼= SL(2,C) ≊ R3 × S3 (3.16)
Spin(3) ∼= SU(2) ≊ S3 (3.17)

Where SL(2,C), SU(2) are classical R–Lie groups.
Back to physics, an elementary particle in (3 + 1) dimensional spacetime is therefore

a unitary irrep of Spin+(3, 1), which is, furthermore22, an induced representation from the
irrep of Spin(3) ∼= SU(2).

3.2 Vector and Spinor Representations

As is evidenced before, we shall only consider irreps of Spin(3) ∼= SU(2); general repre-
sentations of spin group is then closely related (induced by or composed of) SU(2) irreps.
Here we list some key facts about irreps of Spin(3) ∼= SU(2).

• Recall SO(3) irreps mentioned in (3.10); they are basically spin-z eigenstates:

|sz〉 , sz = −j,−j + 1, · · · ,+j, j ∈ Z≥0 (3.18)

Here pµ label is suppressed for sake of simplicity. All SO(3) irreps can always be lifted
as a Spin(3) ∼= SU(2) irrep, by allowing its Z2 center to act trivially. In this way, we
obtain the tensor representations of SU(2).

• Since SU(2) is simply connected, to obtain all of its R-irreps, we need only consider
irreps of Lie algebra spin(3) ∼= su(2). It turns out they are structurally identical
to SO(3) irreps (naturally, since so(3) ∼= su(2) are identical Lie algebras), but with
allowed j values extended to include half integers: j ∈ Z/2. Irreps of SU(2) that are
not irreps of SO(3) are called spinor representations.

• Therefore, all of Spin(3) ∼= SU(2) irreps, and equivalently so(3) ∼= su(2) irreps, are of
the following form:

|sz〉 , sz = −j,−j + 1, · · · ,+j, (3.19)

j ∈
{
0, 12 , 1,

3
2 , 2, · · ·

}
=

{ Z≥0, tensor repr.
Z≥0 +

1
2 , spinor repr.

(3.20)

The set of all tensor irreps of SU(2) descends to the full irreps of SO(3), while spinor
irreps are only irreps of SU(2), not irreps of SO(3). However, they are indeed projec-
tive representations of SO(3).

22 For more discussion about the irreducibility of such induced representation, see [20].
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• Note that the dimension of irrep is given by:

dimC spanC{|sz〉} = 2j + 1 (3.21)

Weyl spinor is then defined to be the fundamental representation V with j = 1
2 , which

is simply the defining module SU(2):

V = spanC
{∣∣sz = +1

2

〉
,
∣∣sz = −1

2

〉}
≡ spanC {|↑〉z , |↓〉z} (3.22)

• Rotation generators Jk = 1
2 ϵijkJ

ij is represented on V by Pauli matrices:

Jk =
1

2
σk, σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
(3.23)

Notice how 2π rotation is not +1 but −1, which again confirms that V is an irrep
for SU(2), but only a projective representation for SO(3):

e−iJzθ = e−iσz
θ
2

θ=2π
===== −1 (3.24)

In physics we would like Jk to be Hermitian or self-adjoint, hence the −i coefficient
in the exponential map e−iJzθ. This is one key feature of spinor: 2π rotation action
is not identity 1, but will produce a minus sign on the spinor! In some sense we can
think of spinor as the Complex “square root” of a vector [21].

• In general, transformation of operators (e.g. Pauli–Lubanski Wµ) in Hilbert space
is related to its transformation as a tensor in spacetime. If we neglect projective
representation for now, we have:

U†WµU = Λν
µWν , U : Λ ∈ SO(3, 1)→ U(H), (without projective repr.) (3.25)

This is a direct consequence of U being a unitary representation, i.e. preserving group
multiplication and having U† = U−1.

• However, due to the projective nature of the Hilbert space, U(Λ) in the LHS should
be lifted to Ũ(Λ̃), while the Λ in the RHS remains unchanged, i.e.,

Ũ†WµŨ = Λν
µWν , Ũ = Ũ(Λ̃), Λ̃ ∈ SL(2,C) (3.26)

• The natural lift from Λ to Λ̃ while preserving Lie group structure is by considering
homotopic paths from 1 to Λ. As is discussed before, we need only consider the doubly
connected rotation subgroup SO(3) ⊂ SO(3, 1). Consider axis–angle parametrization
of SO(3), we have:

Λ = eiJkθ
k 7−→ (θk) = (θx, θy, θz), θk ∈ [0, 2π) (3.27)

Here iJk ∈ so(3) belongs to the defining module, then parametrization of SU(2) can
be easily achieved by extending the range of θk, i.e., we have J̃k ∈ su(2) defining
module and:

Λ̃ = eiJ̃kθ
k 7−→ (θk) = (θx, θy, θz), θk ∈ [0, 4π) (3.28)
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• Λ̃ is related to unit quartenions S3 ⊂ H = spanR {1, i, j, k} by the following identity,
which is a direct analog of Euler’s identity eiθ = cos θ + i sin θ:

Λ̃ = eiJ̃kθ
k ∼ cos |θ|

2
+ θ̂ sin |θ|

2
,

|θ| =
√
θkθk =

√
θ2x + θ2y + θ2z , θ̂ =

(
i θx + j θy + k θz

)/
|θ|

(3.29)

θ is the rotation angle, while θ̂ describes the rotation axis, hence axis–angle parametriza-
tion. Replace Λ̃ in (3.26) with (θk), and we have:

Ũ†WµŨ = Λν
µWν , Ũ = Ũ(θ), θ = (θk), θk ∈ [0, 4π) (3.30)

4 Spin Structure and Spinor Field

From our previous discussions, we have established that in quantum mechanics, an ele-
mentary particle |pµ, sz〉 ∈ H is something that lives in a unitary irrep of extended Poincaré
group R4 ⋊ Spin+(3, 1). By definition, particles become eigenstates in the Hilbert space H
of wave functions, which is often de-localized in spacetime.

On the other hand, in field theory, a particle should be an excitation of some local field
ϕ(x), like a ripple in the pond. Is it possible to relate these two pictures?

The answer is yes, and the idea behind this relation is in fact quite basic. Roughly
speaking, |pµ, sz〉 serves as Fourier modes of field ϕ(x). Details of this correspondence in
quantum field theory are give in Weinberg’s chapter: Quantum Fields and Antiparticles
[14], but similar holds for ordinary quantum mechanics. The end result is that similar to
an elementary particle |pµ, sz〉, elementary fields ϕ(x) also becomes a representation of the
Poincaré symmetry, where not only the symmetry acts on coordinates x in the regular way:

ϕ(x) 7−→ ϕ(x− δx) (4.1)

but also the Lorentz symmetry Spin+(3, 1) ∼= SL(2,C) gets represented pointwise on the
fiber ϕ(x0). This naturally leads us to consider fiber bundles based on M.

4.1 Introduction to Principal Bundle

To introduce spin structure in a natural way, we follow the discussions of [21–24]. For a
mathematically rigorous understanding of spin geometry, see [5, 25, 26]. Our notation will
mostly conform to Lee [27]. We shall use the language of fiber bundles, introduced in [23,
27].



4.1 Introduction to Principal Bundle 15

To simplify the situation, we will again work on hypersurface Σ ⊂M. It is illuminating
to first consider the classical situation, then we have a natural poinwise fundamental repre-
sentation of SO(3) — the tangent space TxΣ. Union of tangent spaces at each point gives
the tangent bundle:

TΣ =
∐
p∈Σ

TpΣ (4.2)

SO(3) action is reflected in the transformation TpΣ under isometric coordinate transforma-
tions, or equivalently, isometric transition function between charts {(Uα,Φα)}α:

Φα ◦ Φ−1
β

∣∣
p
= ταβ(p), ταβ ∈ SO(3) ⊂ GL(3,R) (4.3)

Where Φα is the local trivialization on Uα. In other words, SO(3) is hence the structure
group of tangent bundle, when the transitions between charts is restricted to isometries
defined by the metric.

However, there is one subtlety that needs to be addressed: the refinement of GL(3,R)
transition to SO(3) is locally feasible, but might fail if we consider global transition around a
manifold that is not orientable. To see this, we first observe that transition functions should
always satisfy such cocycle condition (Lee [27], Problem 10-5):

τUV ◦ τVW ◦ τWU = 1 (4.4)

For a Möbius strip however, this is impossible if we restrict τ ∈ SO(3). It is not hard to see
that τUV ◦ τVW ◦ τWU = −1, if we only allow τ ∈ SO(3). In fact, given a metric, we can
only guarantee the refinement of GL(3,R) ⊃ O(3).

From now on we shall assume that our manifold Σ ∈ M is orientable, therefore the
tangent bundle becomes a natural realization of the local SO(3) isometry w.r.t. the metric.
In fact, any representation of SO(3) can be expressed as tensor products and direct sums
of the fundamental representations, therefore the tensor fields realize all possible SO(3)

representations:
ϕµ1µ2···µk

ν1ν2···νl ∈ Γ(Σ, T (k,l)Σ) : Σ→ T (k,l)Σ (4.5)

If we require only local SO(3) symmetry, then the job is done; everything is naturally
provided by the tensor bundle. However, after quantization the symmetry must be extended
to Spin(3), therefore our job is to somehow lift the tensor bundle to a spinor bundle, in a
natural manner that is compatible to the Z2 covering:

π : Spin(3) ∼= SU(2)→ SO(3) (4.6)

In order to obtain a compatible spinor bundle, it is helpful to re-examine the common
structure of all tensor bundles — the SO(3) transition between charts. In general, it is
possible to remove all unnecessary data of a fiber bundle, leaving only the information of
how it transitions between charts. This gives the so-called principal bundle.

Definition (Principal G–Bundle) A principal G–bundle PG → Σ is a fiber
bundle whose model fiber is a manifold diffeo to the structure group G.
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For tensor bundles transforming under SO(3) isometry, they correspond to the same
principal SO(3) bundle PSO(3). In fact, it can be explicitly constructed by considering the
orthonormal frames fields on the tangent bundle, i.e. the frame bundle.

Since its fiber is diffeo to the structure group itself, principal bundle has a natural left
and right group action, defined by the usual group multiplication on G. This two-sided
group action corresponds to the action on the contra-variant and covariant component of a
tensor.

In the physics community, we often say that a tensor is something that transform like a
tensor. Now we can see that this saying is not without its merits, since indeed the essence
of a tensor is its transformation property, captured by the principal bundle.

Even better, given a principal G–bundle and a G–module F as the model fiber, it is
possible to reconstruct the associated fiber bundle up to equivalence. This is precisely the
vector bundle construction theorem given in Lee [27], Problem 10-6, and we will
not restate it here. We need only these two conditions:

• Transition function is a G representation on F :

τUV (p) ∈ G ⊂ EndF (4.7)

• Cocycle condition:
τUV ◦ τVW ◦ τWU = 1 (4.8)

With the idea of principal bundle and construction theorem of associated bundle, our task
of defining a spinor field can now be decomposed into the following two steps:

• Find a natural and compatible lift of PSO(3) to some principal Spin(3)–bundle PSpin(3);
this is called the spin structure on Σ;

• Construct a spinor bundle associated with PSpin(3), then its section is precisely the
spinor field we want to obtain.

4.2 Spin Structure

What kind of lift of PSO(3) to PSpin(3) is considered natural? This is characterized by the
definition of spin structure. We follow closely the discussions in [22, 23].
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Definition (Spin Structure) A spin structure is a principal Spin(p, q)–bundle
PSpin together with a bundle morphism:

PSpin PSO(p,q)

M

π̃

Which restricts fiber-wise to the Z2 covering homomorphism π : Spin(p, q)→ SO(p, q).

Spin structures need not exist and even if they do they need not be unique. We shall
see the obstruction to such lifting by explicit construction.

Again, we choose to work on the hypersurface Σ. Starting from the SO(3) structure,
transition function τ ∈ SO(3) satisfies the cocycle condition:

τUV ◦ τVW ◦ τWU = 1, τ ∈ SO(3) (4.9)

The lifting of τ ∈ SO(3) to τ̃ ∈ Spin(3) always exists locally. First, we simply choose one of
the pre-images of the Z2 covering at some point p ∈ Σ, i.e.

π
(
τ̃(p)

)
= τ(p), π : Spin(3)→ SO(3), p ∈ Σ (4.10)

Then we need to extend such choice of τ̃ smoothly around the manifold. There will be no
obstruction of such extension around a small neighborhood of p ∈ U ⊂ Σ, but it may fail
globally if two different “paths” of extension yields incompatible results. In the end, we can
only guarantee that:

π
(
τ̃UV ◦ τ̃VW ◦ τ̃WU

)
= 1, (4.11)

τ̃UV ◦ τ̃VW ◦ τ̃WU = fUVW = ±1 ∈ kerπ = Z2 (4.12)

But for a spin structure PSpin → PSO(3), τ ∈ SO(3) and τ̃ ∈ Spin(3) should both satisfy the
cocycle condition. This is possible iff. fUVW = 1. It turns out that fUVW as a function
of charts is in fact independent of the choice of local frames; it is completely fixed by the
manifold Σ, i.e. fUVW = f(Σ) is a characteristic class of Σ.

Notice that our discussions about spin structure greatly resemble those in the last section,
about the existence of SO(3) transition. Note that the GL(3,R)→ O(3)→ SO(3) refinement
is also locally trivial, but obstruction occurs in the form of (non-) orientability when we try
to extend it globally on the whole manifold. The situation with spin structure is quite
similar, with the obstruction given by f(Σ).

In fact, these two things can be described in a unifying way by Stiefel–Whitney class wn

and Čech cohomology Hn(Σ,Z2). fUVW = f(Σ) defined above is precisely the 2nd Stiefel–
Whitney class w2(TΣ).
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We will not dive too deep into this subject; for further discussions, see [23, 25]. Rather,
we simply summarize some relevant results below:

• Given any bundle E → Σ, wn(E) ∈ Hn(Σ,Z2);
• Σ orientable iff. w1(TΣ) is trivial;
• Σ has spin structures iff. w2(TΣ) is trivial; furthermore, if this is the case, then the

spin structures on Σ are in one-to-one correspondence with elements of H1(Σ,Z2).
• H1(Σ,Z2) ∼= Hom(π1(Σ),Z2), i.e. ways of assigning (±) signs to non-contractible

loops (S1) in Σ; here π1(Σ) is the fundamental group.
In general, the refinement and lifting of structure group happens in the following steps:

• We start with a C∞ manifold Σ with τ ∈ GL(n,R);
• With Riemannian metric gij , by restricting to isometries, τ ∈ O(n) ⊂ GL(n,R);
• With orientability we can further restrict τ ∈ SO(n) ⊂ O(n);
• With spin structure, we can lift τ ∈ SO(n) to τ̃ ∈ Spin(n).
To better understand spin structure, we shall look at the most basic example Σ = S1

with unit radius the usual flat metric. Note that S1 is an oriented 1–fold, w1(TS1) = 1,
and its tangent bundle is just the trivial line bundle:

TS1 ∼= S1 × R (4.13)

whose isometric transition function is trivial τ ≡ 1 = SO(1), so the frame bundle is just
S1 × {1} ∼= S1. The spin group, however, is non-trivial: Spin(1) ∼= Z2, hence there might
be non-trivial liftings to PSpin.

Indeed, w2(TS1) = 1, but H1(Σ,Z2) ∼= Hom(π1(Σ),Z2) = ±1, and we have two inequiv-
alent spin structures on S1. It is more intuitive to look at their associated line bundles. One
of them is simply S1 × R, but the other one consists of a non-trivial twist on the fiber:

E = S1 ×Z2 R, ψ ∈ Γ(Σ, E) : Σ→ E,

ψ(θ + 2π) = −ψ(θ)
(4.14)

This is precisely the Möbius bundle studied extensively in Lee [27]. In fact, the lifting of
τ ≡ 1 to τ̃ ∈ Z2 is explicitly given in Lee [27], Problem 10-13. By introducing the Complex
label z = eiθ ∈ S1 and two charts U± = S1 \ {±1}, we have:

τ̃+,−(z) =

{
+1, Im z > 0,

−1, Im z < 0,
z = eiθ ∈ S1 (4.15)

In summary, S1 has two distinct spin structures, and their associated R line bundles
are respectively, S1 × R and S1 ×Z2 R, which also correspond to periodic and anti-periodic
boundary conditions on θ ∈ [0, 2π].

In some literature (incl. most physics texts), these two spin structures are affectionally
named Neveu–Schwarz (NS) and Ramond (R). In general, a genus g Riemann surface has
2g distinct periods, which give rise to 22g inequivalent spin structures.
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4.3 Dirac Operator and Spin Connection

Back to Witten’s proof of the positive energy theorem, we have an asymptotic flat 3–
fold Σ ⊂ M, and indeed w1,2(TM) = w1,2(TΣ) = 1 are all trivial, so the existence of spin
structure is guaranteed [4].

With a spin structure, we can construct associated spinor bundles just like the S1 case.
However, the model fiber F of a spinor bundle is generally some C vector space, since the
related Hilbert space on Σ is a C linear space.

In general, the model fiber F can be any spin representation. In Witten’s original proof,
the (complexified) Clifford Cℓ(3, 1)C module is chosen, with F ∼= C4 as a vector space. This
is in fact the defining module of Spin(3, 1), and corresponds to the famous Dirac spinor.
Dirac spinor bundle is then pulled back to the hypersurface Σ ⊂M and treated as a Spin(3)
spinor bundle.

Dirac spinor first arose in the effort of finding a wave equation compatible with relativity.
Dirac noted that relativistic wave equation for an electron should be 1st order in time
dependence, so that it behaves nicely as an initial value problem [28]. This leads to the need
of taking a “square root” of the d’Alembert operator ∂a∂a, i.e. finding some scalar operator
i/∂ so that:

(i/∂)2 = ∂a∂a (4.16)
Here i is introduced to ensure that i/∂ is self-adjoint, much like ∂a∂a itself. Dirac discovered
that such i/∂ could be realized using γa ∈ Cℓ(3, 1), namely,

/∂ = γa∂a, /∂
2
= −1 ∂a∂a, (4.17)

1, γa ∈ Cℓ(3, 1), (4.18)
1
2

{
γa, γb

}
= 1

2

(
γaγb + γaγb

)
= −ηab (4.19)

/∂ is the so-called Dirac operator. Cℓ(3, 1) is faithfully represented by 4×4 Complex matrices,
and the field ψ it acts on shall be a column vector ψ ∈ F ∼= C4. This is the Dirac spinor.

Dirac operator and Clifford γa can then be generalized in curved spacetime; we have:
/∇ = γa∇a ≡ θa.∇a (4.20)

Where θa is the orthonormal coframe defined in (1.2), and “.” denotes some Clifford multi-
plication. Without referencing γa, the latter expression can then be generalized to arbitrary
fiber F , as long as F is some spin representation. Dirac’s equation in curved spacetime can
then be expressed in the following form23:(

i /∇−m
)
ψ(x) = 0 (4.21)

In Witten’s proof, since we are only working on 3–fold Σ ∈M, this is further truncated
to the hypersurface Dirac operator:

D = θi.∇i =
3∑

i=1

θi.∇i (4.22)

23 There are numerous conventions for Cℓ(3, 1) and /∇. We have chosen a convention that is compatible with
Witten’s proof [1, 4]. Note that this differs from Weinberg’s convention [14].
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In fact, on such 3–fold Σ, Witten’s proof can actually be simplified using basic Spin(3)
representations, i.e. Weyl spinors introduced in Section 3.2. Then, the θi multiplications
can be expressed with Pauli matrices σi, defined in (3.23), and the fiber is thus reduced to
F = V ∼= C2. See [2] for this simplified version of Witten’s proof.

Note that we haven’t addressed the nature of covariant derivative ∇. Since we are
no longer working on a tensor bundle, this could not be the usual Levi-Civita connection.
In fact, the lifting of PSO(3) to PSpin naturally induces a lifting of the usual Levi-Civita
connection; this is the so-called spin connection. See [22, 24] for further discussions.

Generally, for Σ ⊂M, ∇: spin connection onM, D: hypersurface Dirac operator, (4.16)
is modified to be the Lichnerowicz–Weitzenböck formula:

D†D = D2 = ∇†∇+R (4.23)

Where “†” denotes C–adjoint w.r.t. the standard Hermitian form on F ∼= Cn, and R is some
curvature corrections [4].

5 Sketch of the Proof

With previous preparations, we are finally ready to sketch the main ideas of Witten’s
proof, following [1, 2, 4].

• First, assume there is matter described by spinor field ψ on the manifold M.
The motivation and validity of this assumption is the main content of this review. It
is indeed the essence of Witten’s proof; following steps, though technically difficult,
are conceptually simple compared to this first step.

• The dynamics of spinor field respects spacetime symmetries, and ψ(x) transforms as
a spinor representation on its fiber, specified in section 3.2. Just as is discussed in
section 2.1, we can construct a conserved Noether current of ψ:

jµ = ψ†.θ0.θµ.ψ (5.1)

This is a null (lightlike) vector near the asymptotic boundary, hence the contraction
of jµ with the ADM energy (2.6) yields:

jµPµ ∝ E − |P | (5.2)

• On the other hand, by definition, jµPµ can be expanded with curvature Rµν and
field ψ. Using Einstein’s equations, Rµν can be further expressed in local energy–
momentum Tµν in the following form:

jµPµ =

ˆ
Σ

(
−T0νjν + · · ·

)
dVol (5.3)

Where the (· · · ) part contains only ∇µψ terms. This can be seen as the integral form
of the Lichnerowicz–Weitzenböck formula (4.23), where R is replaced by Tµν .
Calculations from now on relies heavily on tricks from spinor analysis, including ex-
tensive use of (4.23) and Bochner formula, which is well-reviewed in math texts such
as [5, 26]. Witten, on the other hand, refers to supergravity for inspirations [1].
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• Tµν satisfies the dominant energy condition (DEC) (2.8), so the first term of (5.3) is
positive. There are also spinor bilinear ‖∇ψ‖2 in (5.3), which are also automatically
positive. The only remaining part is proportional to Dψ. If we can choose some
non-zero ψ so that:

Dψ = 0 (5.4)

Then the proof is done.
• (5.4) is called the Dirac–Witten equation. Proof of the theorem now comes down to

analyzing this PDE. In fact, on asymptotically flat Σ ⊂ M, if ψ vanishes at infinity
fast enough (∼ 1

r1−ϵ ), then it has to be zero ψ = 0. This gives E = 0 and M flat.
Furthermore, if ψ is asymptotically constant, then the right-hand side of (5.3) is
positive, since it contains spinor bilinear ‖∇ψ‖2.
These results are the so-called Witten’s vanishing theorem [4]. It can be proven
rigorously using Green’s function of operator D, as is proved and well-reviewed in [1,
4]. This concludes Witten’s proof of the positive energy theorem.
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