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1 Spacelike Geodesic for Poincaré AdS

The Poincaré AdS;y1 metric is given by:

—dt* +di® +dz®  da® +d2?
2 - 2 ’

ds®> = GrydXTdx’ = (1.1)

z z

da? = —dt* + di® = N da dz”, X1 ~ (1,7, 2) ~ (2", 2), (1.2)
Note that here we define dz? using the flat metric 7, while dX has an index that should be raised
and lowered using the curved metric Gyy = Z% nry. Generally upper case tensors are handled with

G, while lower case ones are handled with n. The full isometry of such spacetime is then given by
SO(d, 2) with M-&-%ﬁ generators, including:

1. Among the 2# ~ (2°, %) = (,Z) directions:

(a) @ SO(d — 1, 1) rotations x,,0, — x,0,,, boosts included,;
(b) d translations 0,;

2. Dilation with X7 ~ (z#,2) — AXT = X (2#, 2), generated by A = X0 = 20, + 219,;
3. Special conformal transformations; see Appendix A for an intuitive derivation. We have:

k= (2* + %) 0, — 2x,A (1.3)

By Noether’s theorem, Q= = V;Z! = G;E/V7 is conserved along the geodesic; here V7 is the
normalized tangent vector, while Z! is some Killing vector of the spacetime, e.g. one from the list
above. We can then write down the conserved charges along a geodesic - in Poincaré AdS:

=GVl =V,

mMyy = SC#VV - xu‘/u
. (1.4)

2V
+at'p,

A=XV =

52
ky, = (2* +2*)p, — 23,A

These are all integration constants along . Again note that X,V have indices that should be handled
with Gpy, in particular,

dXx* 2
= = 1.
= (15)

1
dX, =G, rdX" = Sdo, VE
On the other hand, V# should be properly normalized, therefore:

Vz 2
WIE =gy = 25— 0., (1.6)

z\2
For p? = 0, we have ||[V|* = (sz) > 0, thus = can be either spacelike or null, but not timelike. In
i ,£1; along with %; = 22pH, we obtain:

fact, we have Y= = 1dz
z d

A

=0 spacelike: z(\) = z(0) e, z#(\) = 2#(0) £ 2(0)? p* <=2, (w7
null: z(A\) = 2(0), (X)) = 27 (0) + 2(0)2 p" A,
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From now on we shall focus on the p? # 0 situation. Note that we can complete the square on
the right-hand side of the k* conservation such that:

ky +pua® =pu(2* + (z —a)?), A=p,a" (1.8)
For p* # 0, we can always find some c,, such that c,p" # 0, therefore we have:

e LY
24 (z—a) = Zp“ +a? = (2) = const., A =p,a” (1.9)

We see that v lands on a “sphere” centered at z = 0,2 = a in R?*!; with the Lorentzian metric,
it is actually a hyperboloid. Note that for now the radius ( %)2 can actually be negative or zero; more
specifically,

1. L? > 0: one-sheet hyperboloid;
2. L? < 0: two-sheet hyperboloid;
3. L? = 0: conic surface.

On the other hand, we can actually solve X! completely by combining (1.5), (1.6); we have:

da# o, dz daz# zpH 9 9 Va2
A Ot Al i g Zpt= () 2 (1.10)
pH 0 L\
= 7 C x“:a“ip—zx/é—zQpQ, z2—|—(m—a)2=p= <2> (1.11)

This confirms our observation above, and further reveals that v lies in a “plane” in the R?
subspace consisting of the x# coordinates. The behavior of v is sensitive to the sign of § and p?;
more specifically,

1. § = —1, i.e. for timelike v, we must have p? < 0, and z > m = % > 0, namely z is bounded

from below. This means that timelike geodesic can never reach the asymptotic boundary
z — 0. In this case, v is a section of the one-sheet hyperboloid.

2. § = +1, i.e. for spacelike 7y, we can have p?> > 0 or p* < 0.
(a) For p? > 0, again we have % = m > 0, and + is again a cross-section of the one-sheet
hyperboloid. However, now we have z < %, namely z is bounded from above, and:

L pH

z—0, t=at+ P —ar+ pt, pt= (1.12)

P2 2

We can also nicely parametrize X! in terms of the proper length \; for convenience, set
z#(0) = a*, 2(0) = £, then we have:

L 1 L
A)=—-—— H(A) = a” £ p*— tanh A 1.13
2 2 cosh A" (W) =a"£p g (1.13)
(b) For p? < 0, we have (£)? = 1% < 0, and v is now a cross-section of the two-sheet

hyperboloid. Again as z — 0 it lands at a* = a* + % p*; however, |z#| grows with z and
extends into the bulk instead of returning to the boundary, i.e. z, |z#| — 0.

The differential equation in this case is almost the same as in (a), but now we have to
choose a different initial condition, since v won’t even reach x = a. However, we can

—2/T7-
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actually set 2:(0), 2(0) — oo; we then have:
1

A==

A0 =3

sinh \’
This is an evidence that z — oo might not be the “end of the world” after all; it’s likely

L
xH(A) = a”iﬁ“‘Q

coth A (1.14)

that z — oo is only a horizon, since a spacelike geodesic 7y can reach it within finite proper
length .

In summary, there are 3 types of spacelike geodesics in Poincaré AdS, which closely resemble the
3 types of conic sections:

1. p?> = 0: parabolic, given in (1.7), with one end going to z — 0 and the other end going to
z — 005 it takes infinite proper length A for it to reach 0 or co.

2. p? < 0: hyperbolic, given in (1.11) and (1.14), also with one end going to z — 0 and the other
end going to z — oo, but it reaches oo within finite A.

3. p? > 0: elliptic, given in (1.11) and (1.13), with both ends going to z — 0, and it takes infinite
proper length A for it to reach either end.

Now consider two points x1,zs near the boundary z = e connected by a spacelike geodesic 7.
This can only be the “elliptic type” discussed above. We have:

LY LY
at =at £ p" <2> -22, 224 (z—-a)P= (2> , (1.15)
a:mI;xQ, DX Ty — T (1.16)
It’s length is then given by:
e da? —Zsz
z>e€ z
2 2
_ / (dtanh A)2 + (dsech \) . A=cosh (L) (1.17)
[A|<A (SeCh A)2 €

A
L L
:/ dA:QAchoshl()erlog, e—0
_A 2e €

2 Einbein Action

The einbein action of a point particle is given by:
1 .
S[n, X] = 5/(17 (w1 %, X0 = m?) (2.1)

Under worldline reparametrization: 7 — 7/ = f(7), we have X'(7') = X (1), i.e. X* transforms like
a scalar under worldline diffeomorphism; X () — X'(7) = X (f~!(7)).

On the other hand, 5 should be treated like an einbein: n = /=7, here v = ~,, is the worldline

metric; v < 0 due to the Lorentzian signature [1]. We have:
or or
n:\/—’y»—M?’:ndet%:n?, (2.2)
or\ (o' or' or'
—1 - _ —1 Nn—1 _ -1 ¥ R — e 2.3
U V=T =) =0 (37”)(87 87) U (2.3)
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It is clear that the action is invariant under the transformation:

S = l/dT/ ((n/)_laT’XﬂaT’Xu - (n/)m2>

2
2.4)
1 or' ( _,or" Ot or u or 5\ (
_2/dTaT (7] 87'87’6TX1L'8T’8TX _"aT'm =5

We can eliminate 7 classically by placing it on shell:

08 —2 v Y 2 1 % 1L
0= 0 = —n K XE -, glX] = /=%, X (25)

Substitute this back to the action, and we have:

S[X] = Sy = nlX], X] = %/df (m (- XX X, X0 = m (X, X))

(2.6)
—m / dr /=%, X
3 Ricci Tensor for Static Spherical Metric
Consider the metric:
ds? = —f(r)dt* + h(r) dr® + r? (d(92 + sin? 6 dng) = Ngp %€’ (3.1)
Here we’ve defined the following vierbein:
et =/f(r)dt
e" = +/h(r)dr (3.2)
e’ =rdf .
e? = rsinfde¢
To find the connection form, we first note the Cartan’s structure equation [2]:
de® = d(ej, da”) = Oye;, da* A da”
= (—wzbeg + quei) dat A da” (3.3)

= —wy Aeb + T

Where T is the torsion tensor. Here we’ve used the relation between spin connection Wit and the
affine connection Ff;,j. For the torsion-free Levi-Civita connection, we have de® = —w?®, A €.

Rigidity of the veilbein, namely V,(g..efey) = Vuna, = 0, further implies that:
Wpab = —Wyba (34)

With these constraints we can solve for the connection form, and we find that only the following

components are non-vanishing!:

! :
t T
wr—2mdt— W' (3.5)

1 Go to https://github.com/bryango/Archive/blob/master/HW-Gravity/gravityl/nb/vielbein.wl for a Mathe-
matica script for this calculation.
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-1
Wiy = N dg = —wf, (3.6)
- —sinf
o=~ de = —w?, (3.7)
w9¢ = —cosfd¢ = —w% (3.8)
The curvature form is thus given by:
Qab = dwab + Wac AN wcb (39)

The exterior derivative is easily computed in the dz* basis; however, to get to the Ricci tensor, it
would be convenient to switch to the e basis. Here we only write down the upper half of 2%, since
the lower half can be inferred from anti-symmetry:

0 RY,eNe” Riygetne® R, el ne?
T r 0 T T o)
Qr ~ 0 Ry pe" Ne R0¢T¢ee/\e¢ (3.10)
0 R’ g €” Ne
0
L
T4 f2h  4fh2 2fh]
Rtee_ _f/ _Rt¢¢
t0 — - tp)
2rfh (3.11)
T h T
ROTQZW:R@%)?
h—1
0 _
Roo0 = a3,

The Ricci tensor in e® basis is given by R = R°,,. Note that the components are non-zero
iff. a = b, i.e. the Ricci tensor is diagonal. We have:
: 0
Rgy ~ diag (R",s + R thrR(bwt,... et
:diag(RtT,trJrRtete+Rt¢t¢7... e ’)
= dlag (Rtrtr + Rt@t@ + Rt¢t¢7
Rtrtr + RT@T@ + qubr(b?
0
Rl + R g + R 494,
0
Ry + R gpp + R ¢9¢)

= dlag (Rtrtr + 2Rt9t07
Rtrtr + 2RT€T€7

Rgo = R'pyp + Rl g + R9¢9¢a (3.12)
Rgy = Ree)
12 AN 1 /
= diag ! + S'h - L - La
Af2h T Afh? T 2fh rfh

f/2 f/h/ f// h/

Af2h T ufh? T afh k2

W kel
2rfh = 2rh? r2h ’

Ryy = Roog ),

Rgg =
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To go back to the dz# basis, we have R, = Rabe e . In particular, here we have R, = Raa(eZ)g,
therefore: I g
R v — di 5L 1>
p = 188 ( i Yz T
f/2 f/h/ f/l /

a2 Tan o T

rf h h -1
Rop = — f

2fh+272+ ho

Ry = Roo sin? Q)

(3.13)

4 Jackiw—Teitelboim Gravity
The Jackiw—Teitelboim (JT) action is given by:

= Tom G/d%ﬁcb(RH) (4.1)

% = 0 gives us R = —2. Now consider 52%, and we have:

1
6QS = ﬁ/d2$®6<\/ —g (R+2)), R= g’ul/RMlla
2 ! (4.2)
_ - nv pv
rovg [ o vEae ] (Ru - Jour+2) o0 + g iR, |

Note that the g"” §R,, term is a total derivative®:

g,w/ 5R;w — (V,uvu _ g“”VAVA) 5g,w
_(VMVV - g;wv/\v)\) 5gl“/ (43)

= V(g o1}, - g aT,)
In Einstein gravity this gets reduced to a boundary term. But here we have an additional factor of
®, so after integration by parts, we actually get the equation of motion (EoM) for ®, up to some

boundary terms?:

1
2 I _ _ A nz
545 ~ 16G dxw/i{ ( 29uu(R+2)> (V¥ = g ¥ VA)CI)}&J (4.4)

In 2D, we have R, = %g#,,R, so the EoM is simply:
(Vp,vu - guuv)\v/\ + g/ﬂ/) ®=0 (45)
Contraction with g further gives us (V’\V,\ — 2)<I> = 0, so in the end we have:

(VuVy — gu)® =0, R=-2 (4.6)

2 See the amazing lecture note by Matthias Blau at http://www.blau.itp.unibe.ch/GRLecturenotes.html.
3 See e.g. Section 2 of [3].
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REFERENCES 7
A Derivation of the special conformal transformations

Special conformal transformations can be understood as translations conjugated by inversions.
2 . . . . . . . .
Note that dz% is invariant under z — %; if we include the x* directions, we can consider:

I
I: XIHX—Q, 2=t + 72+ 22 (A1)
X
55—27XI§J ’ z 2 d 2
pon g (U 0] (2] % s
X X Z

We see that inversion Z is indeed a (discrete) symmetry of the metric. Here we’ve defined yet another
lower case variable x! ~ (z#,z), which as a contravariant vector has the same components as X/,
but with an index that should be lowered by the flat metric 177, i.e. x7 = nr7x? = nrsX’. The d
special conformal generators are then given by:

v 0
_ a” P, I
P = Oat (Ioe °oZoX )a:O ox!
—3(1“ ‘%4_&]’2 oxI
x a=0 (A.3)

B 8( xI+alx? ) 0
dar \ 14 2alxr +a?x? ),_, 0X!

= XQOM — 23:,)(181

= X%, — 2z, A
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