
Gravity №1 cbya

Bryan Compiled @ 2023/09/14

1 Spacelike Geodesic for Poincaré AdS

The Poincaré AdSd+1 metric is given by:

ds2 = GIJ dXI dXJ =
−dt2 + dx⃗2 + dz2

z2
=

dx2 + dz2

z2
, (1.1)

dx2 = −dt2 + dx⃗2 = ηµν dxµ dxν , XI ∼ (t, x⃗, z) ∼ (xµ, z), (1.2)

Note that here we define dx2 using the flat metric η, while dX has an index that should be raised
and lowered using the curved metric GIJ = 1

z2 ηIJ . Generally upper case tensors are handled with
GIJ , while lower case ones are handled with η. The full isometry of such spacetime is then given by
SO(d, 2) with (d+2)(d+1)

2 generators, including:

1. Among the xµ ∼ (x0, x⃗) ≡ (t, x⃗) directions:

(a) d(d−1)
2 SO(d− 1, 1) rotations xµ∂ν − xν∂µ, boosts included;

(b) d translations ∂µ;

2. Dilation with XI ∼ (xµ, z) 7→ λXI = λ (xµ, z), generated by ∆ = XI∂I = z∂z + xµ∂µ;
3. Special conformal transformations; see Appendix A for an intuitive derivation. We have:

kµ = (z2 + x2) ∂µ − 2xµ∆ (1.3)

By Noether’s theorem, QΞ = VIΞ
I = GIJΞ

IV J is conserved along the geodesic; here V I is the
normalized tangent vector, while ΞI is some Killing vector of the spacetime, e.g. one from the list
above. We can then write down the conserved charges along a geodesic γ in Poincaré AdS:

pµ = GµIV
I = Vµ

mµν = xµVν − xνVµ

∆ = XIVI =
zV z

z2
+ xµpµ

kµ = (z2 + x2) pµ − 2xµ∆

(1.4)

These are all integration constants along γ. Again note that X,V have indices that should be handled
with GIJ , in particular,

dXµ = GµI dXI =
1

z2
dxµ , V µ =

dXµ

dλ = z2pµ (1.5)

On the other hand, V µ should be properly normalized, therefore:

‖V ‖2 = gIJV
IV J =

(V z)2

z2
+ z2p2 = δ = 0,±1, (1.6)

For p2 = 0, we have ‖V ‖2 = (V z)2

z2 ≥ 0, thus γ can be either spacelike or null, but not timelike. In
fact, we have V z

z = 1
z

dz
dλ = 0,±1; along with dxµ

dλ = z2pµ, we obtain:

p2 = 0,
spacelike : z(λ) = z(0) e±λ, xµ(λ) = xµ(0)± z(0)2 pµ e±2λ−1

2 ,

null : z(λ) = z(0), xµ(λ) = xµ(0) + z(0)2 pµλ,
(1.7)
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From now on we shall focus on the p2 6= 0 situation. Note that we can complete the square on
the right-hand side of the kµ conservation such that:

kµ + pµa
2 = pµ

(
z2 + (x− a)2

)
, ∆ = pµa

µ (1.8)

For pµ 6= 0, we can always find some cµ such that cµp
µ 6= 0, therefore we have:

z2 + (x− a)
2
=

cµk
µ

cµpµ
+ a2 =

(
L

2

)2
= const., ∆ = pµa

µ (1.9)

We see that γ lands on a “sphere” centered at z = 0, x = a in Rd+1; with the Lorentzian metric,
it is actually a hyperboloid. Note that for now the radius

(
L
2

)2 can actually be negative or zero; more
specifically,

1. L2 > 0: one-sheet hyperboloid;
2. L2 < 0: two-sheet hyperboloid;
3. L2 = 0: conic surface.

On the other hand, we can actually solve XI completely by combining (1.5), (1.6); we have:

dxµ

dλ = z2pµ,
dz
dλ = ±z

√
δ − z2p2,

dxµ

dz = ± zpµ√
δ − z2p2

, δ − z2p2 =
(
V z

z

)2 ≥ 0 (1.10)

=⇒ γ ⊂ xµ = aµ ± pµ

p2

√
δ − z2p2, z2 + (x− a)2 =

δ

p2
=

(
L

2

)2
(1.11)

This confirms our observation above, and further reveals that γ lies in a “plane” in the Rd

subspace consisting of the xµ coordinates. The behavior of γ is sensitive to the sign of δ and p2;
more specifically,

1. δ = −1, i.e. for timelike γ, we must have p2 < 0, and z ≥ 1
|∥p∥| =

L
2 > 0, namely z is bounded

from below. This means that timelike geodesic can never reach the asymptotic boundary
z → 0. In this case, γ is a section of the one-sheet hyperboloid.

2. δ = +1, i.e. for spacelike γ, we can have p2 > 0 or p2 < 0.

(a) For p2 > 0, again we have L
2 = 1

∥p∥ > 0, and γ is again a cross-section of the one-sheet
hyperboloid. However, now we have z ≤ L

2 , namely z is bounded from above, and:

z → 0, xµ = aµ ± pµ

p2
= aµ ± L

2
p̂µ, p̂µ =

pµ

‖p‖
(1.12)

We can also nicely parametrize XI in terms of the proper length λ; for convenience, set
xµ(0) = aµ, z(0) = L

2 , then we have:

z(λ) =
L

2

1

coshλ
, xµ(λ) = aµ ± p̂µ

L

2
tanhλ (1.13)

(b) For p2 < 0, we have (L2 )
2 = 1

p2 < 0, and γ is now a cross-section of the two-sheet
hyperboloid. Again as z → 0 it lands at xµ = aµ ± L

2 p̂µ; however, |xµ| grows with z and
extends into the bulk instead of returning to the boundary, i.e. z, |xµ| → ∞.
The differential equation in this case is almost the same as in (a), but now we have to
choose a different initial condition, since γ won’t even reach x = a. However, we can
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actually set x(0), z(0) → ∞; we then have:

z(λ) =

∣∣∣∣L2
∣∣∣∣ 1

sinhλ
, xµ(λ) = aµ ± p̂µ

∣∣∣∣L2
∣∣∣∣ cothλ (1.14)

This is an evidence that z → ∞ might not be the “end of the world” after all; it’s likely
that z → ∞ is only a horizon, since a spacelike geodesic γ can reach it within finite proper
length λ.

In summary, there are 3 types of spacelike geodesics in Poincaré AdS, which closely resemble the
3 types of conic sections:

1. p2 = 0: parabolic, given in (1.7), with one end going to z → 0 and the other end going to
z → ∞; it takes infinite proper length λ for it to reach 0 or ∞.

2. p2 < 0: hyperbolic, given in (1.11) and (1.14), also with one end going to z → 0 and the other
end going to z → ∞, but it reaches ∞ within finite λ.

3. p2 > 0: elliptic, given in (1.11) and (1.13), with both ends going to z → 0, and it takes infinite
proper length λ for it to reach either end.

Now consider two points x1, x2 near the boundary z = ϵ connected by a spacelike geodesic γ.
This can only be the “elliptic type” discussed above. We have:

xµ = aµ ± p̂µ

√(
L

2

)2
− z2, z2 + (x− a)2 =

(
L

2

)2
, (1.15)

a =
x1 + x2

2
, p̂ ∝ x2 − x1 (1.16)

It’s length is then given by:

A =

ˆ
z≥ϵ

√
dx2 + dz2

z2

=

ˆ
|λ|≤Λ

√
(d tanhλ)2 + (d sechλ)2

(sechλ)2
, Λ = cosh−1( L

2ϵ )

=

ˆ Λ

−Λ

dλ = 2Λ = 2 cosh−1

(
L

2ϵ

)
∼ 2 log L

ϵ
, ϵ → 0

(1.17)

2 Einbein Action

The einbein action of a point particle is given by:

S[η,X] =
1

2

ˆ
dτ

(
η−1ẊµẊ

µ − ηm2
)

(2.1)

Under worldline reparametrization: τ 7→ τ ′ = f(τ), we have X ′(τ ′) = X(τ), i.e. Xµ transforms like
a scalar under worldline diffeomorphism; X(τ) 7→ X ′(τ) = X

(
f−1(τ)

)
.

On the other hand, η should be treated like an einbein: η =
√
−γ, here γ = γττ is the worldline

metric; γ < 0 due to the Lorentzian signature [1]. We have:

η =
√
−γ 7−→ η′ = η det ∂τ

∂τ ′
= η

∂τ

∂τ ′
, (2.2)

η−1 = −
√
−γ γ−1 7−→ (η′)−1 = η−1

(
∂τ

∂τ ′

)(
∂τ ′

∂τ

∂τ ′

∂τ

)
= η−1 ∂τ

′

∂τ
(2.3)
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It is clear that the action is invariant under the transformation:

S′ =
1

2

ˆ
dτ ′

(
(η′)−1∂τ ′Xµ∂τ ′Xµ − (η′)m2

)
=

1

2

ˆ
dτ ∂τ ′

∂τ

(
η−1 ∂τ

′

∂τ
· ∂τ

∂τ ′
∂τXµ · ∂τ

∂τ ′
∂τX

µ − η
∂τ

∂τ ′
m2

)
= S

(2.4)

We can eliminate η classically by placing it on shell:

0 =
δS

δη
= −η−2ẊµẊ

µ −m2, η[X] =
1

m

√
−ẊµẊµ (2.5)

Substitute this back to the action, and we have:

S[X] = S[η = η[X], X] =
1

2

ˆ
dτ

(
m (−ẊµẊ

µ)−
1
2 ẊµẊ

µ −m (−ẊµẊ
µ)+

1
2

)
= −m

ˆ
dτ

√
−ẊµẊµ

(2.6)

3 Ricci Tensor for Static Spherical Metric

Consider the metric:

ds2 = −f(r)dt2 + h(r)dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
= ηab e

aeb (3.1)

Here we’ve defined the following vierbein:

et =
√

f(r)dt

er =
√

h(r)dr
eθ = r dθ
eϕ = r sin θ dϕ

(3.2)

To find the connection form, we first note the Cartan’s structure equation [2]:

dea = d(eaν dxν) = ∂µe
a
ν dxµ ∧ dxν

=
(
−ωa

µbe
b
ν + Γλ

µνe
a
λ

)
dxµ ∧ dxν

= −ωa
b ∧ eb + T a

(3.3)

Where T a is the torsion tensor. Here we’ve used the relation between spin connection ωa
µb and the

affine connection Γλ
µν . For the torsion-free Levi-Civita connection, we have dea = −ωa

b ∧ eb.

Rigidity of the veilbein, namely ∇µ(gµνe
µ
ae

ν
b ) = ∇µηab = 0, further implies that:

ωµab = −ωµba (3.4)

With these constraints we can solve for the connection form, and we find that only the following
components are non-vanishing1:

ωt
r =

f ′

2
√
fh

dt = −ωr
t (3.5)

1 Go to https://github.com/bryango/Archive/blob/master/HW-Gravity/gravity1/nb/vielbein.wl for a Mathe-
matica script for this calculation.
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ωr
θ =

−1√
h

dθ = −ωθ
r (3.6)

ωr
ϕ =

− sin θ√
h

dϕ = −ωϕ
r (3.7)

ωθ
ϕ = − cos θ dϕ = −ωϕ

θ (3.8)

The curvature form is thus given by:

Ωa
b = dωa

b + ωa
c ∧ ωc

b (3.9)

The exterior derivative is easily computed in the dxµ basis; however, to get to the Ricci tensor, it
would be convenient to switch to the ea basis. Here we only write down the upper half of Ωa

b since
the lower half can be inferred from anti-symmetry:

Ωa
b ∼


0 Rt

rtr e
t ∧ er Rt

θtθ e
t ∧ eθ Rt

ϕtϕ e
t ∧ eϕ

· · · 0 Rr
θrθ e

r ∧ eθ Rr
ϕrϕ e

r ∧ eϕ

· · · · · · 0 Rθ
ϕθϕ e

θ ∧ eϕ

· · · · · · · · · 0

 (3.10)

Rt
rtr =

f ′2

4f2h
+

f ′h′

4fh2
− f ′′

2fh
,

Rt
θtθ =

−f ′

2rfh
= Rt

ϕtϕ,

Rr
θrθ =

h′

2rh2
= Rr

ϕrϕ,

Rθ
ϕθϕ =

h− 1

r2h

(3.11)

The Ricci tensor in ea basis is given by Rab = Rc
acb. Note that the components are non-zero

iff. a = b, i.e. the Ricci tensor is diagonal. We have:

Rab ∼ diag
(
Rr

trt +Rθ
tθt +Rϕ

tϕt, · · · , · · · , · · ·
)

= diag
(
Rt

rtr +Rt
θtθ +Rt

ϕtϕ, · · · , · · · , · · ·
)

= diag
(
Rt

rtr +Rt
θtθ +Rt

ϕtϕ,

Rt
rtr +Rr

θrθ +Rr
ϕrϕ,

Rt
θtθ +Rr

θrθ +Rθ
ϕθϕ,

Rt
ϕtϕ +Rr

ϕrϕ +Rθ
ϕθϕ

)
= diag

(
Rt

rtr + 2Rt
θtθ,

Rt
rtr + 2Rr

θrθ,

Rθθ = Rt
θtθ +Rr

θrθ +Rθ
ϕθϕ,

Rϕϕ = Rθθ

)
= diag

(
f ′2

4f2h
+

f ′h′

4fh2
− f ′′

2fh
− f ′

rfh
,

f ′2

4f2h
+

f ′h′

4fh2
− f ′′

2fh
+

h′

rh2
,

Rθθ = − f ′

2rfh
+

h′

2rh2
+

h− 1

r2h
,

Rϕϕ = Rθθ

)
,

(3.12)
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To go back to the dxµ basis, we have Rµν = Rabe
a
µe

b
ν . In particular, here we have Rµµ = Raa(e

a
µ)

2,
therefore:

Rµν = diag
(

f ′2

4fh
+

f ′h′

4h2
− f ′′

2h
− f ′

rh
,

f ′2

4f2
+

f ′h′

4fh
− f ′′

2f
+

h′

rh
,

Rθθ = − rf ′

2fh
+

rh′

2h2
+

h− 1

h
,

Rϕϕ = Rθθ sin2 θ

)
(3.13)

4 Jackiw–Teitelboim Gravity

The Jackiw–Teitelboim (JT) action is given by:

S =
1

16πG

ˆ
d2x

√
−gΦ(R+ 2) (4.1)

δS
δΦ = 0 gives us R = −2. Now consider δS

δgµν , and we have:

δgS =
1

16πG

ˆ
d2xΦ δ

(√
−g (R+ 2)

)
, R = gµνRµν ,

=
1

16πG

ˆ
d2x

√
−gΦ

{(
Rµν − 1

2
gµν(R+ 2)

)
δgµν + gµν δRµν

} (4.2)

Note that the gµν δRµν term is a total derivative2:

gµν δRµν =
(
∇µ∇ν − gµν∇λ∇λ

)
δgµν

= −
(
∇µ∇ν − gµν∇λ∇λ

)
δgµν

= ∇λ

(
gµν δΓλ

µν − gµλ δΓν
νµ

) (4.3)

In Einstein gravity this gets reduced to a boundary term. But here we have an additional factor of
Φ, so after integration by parts, we actually get the equation of motion (EoM) for Φ, up to some
boundary terms3:

δgS ∼ 1

16πG

ˆ
d2x

√
−g

{
Φ

(
Rµν − 1

2
gµν(R+ 2)

)
−

(
∇µ∇ν − gµν∇λ∇λ

)
Φ

}
δgµν (4.4)

In 2D, we have Rµν ≡ 1
2gµνR, so the EoM is simply:(

∇µ∇ν − gµν∇λ∇λ + gµν
)
Φ = 0 (4.5)

Contraction with gµν further gives us
(
∇λ∇λ − 2

)
Φ = 0, so in the end we have:

(∇µ∇ν − gµν)Φ = 0, R = −2 (4.6)

2 See the amazing lecture note by Matthias Blau at http://www.blau.itp.unibe.ch/GRLecturenotes.html.
3 See e.g. Section 2 of [3].
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A Derivation of the special conformal transformations

Special conformal transformations can be understood as translations conjugated by inversions.
Note that dz2

z2 is invariant under z 7→ 1
z ; if we include the xµ directions, we can consider:

I : χI 7→ χI

χ2
, χ2 = −t2 + x⃗2 + z2, (A.1)

I2 = 1, ds2 7→

δIJ − 2 χIχJ

χ2

χ2
dχJ

2/(
z

χ2

)2
=

dχ2

z2
= ds2 (A.2)

We see that inversion I is indeed a (discrete) symmetry of the metric. Here we’ve defined yet another
lower case variable χI ∼ (xµ, z), which as a contravariant vector has the same components as XI ,
but with an index that should be lowered by the flat metric ηIJ , i.e. χI = ηIJχ

J = ηIJX
J . The d

special conformal generators are then given by:

kµ =
∂

∂aµ

(
I ◦ ea

νPν ◦ I ◦XI
)
a=0

∂

∂XI

=
∂

∂aµ

 χI

χ2 + aI∣∣χJ

χ2 + aJ
∣∣2

a=0

∂

∂XI

=
∂

∂aµ

(
χI + aIχ2

1 + 2aIχI + a2χ2

)
a=0

∂

∂XI

= χ2∂µ − 2xµX
I∂I

= χ2∂µ − 2xµ∆

(A.3)
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