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1 Morphism between coverings is covering:

For Fi → Ei
pi−→ B: coverings in Cov0(B) with Ei: connected and B: path connected and locally

path connected, the following diagram commutes:

E1 E2

B

f

p1 p2

e2 = f(e1),

b = p1(e1) = p2(e2),

To show that f is itself a covering, we need only verify that f is locally trivial with some discrete
fiber F . In fact, given any e2 ∈ E2 and b = p2(e2), there exists some neighborhood U ⊂ B that the
following diagram holds (by restriction):

U × F1 U × F2

U

f

p1 p2

e1 =
(
b, k1

)
,

e2 =
(
b, k2(b, k1)

)
,

ki ∈ Fi

Generally, k2 = k2(b, k1) depends on the base point b ∈ B. However, since B is locally path
connected, we can restrict U to be path connected, while k2 ∈ F2: discrete. Since continuous maps
preserve path connectedness, k2 is in fact independence of b, i.e. k2 = φ(k1).

On the other hand, ∀ e2 = (b, k2) ∈ U×{k2} ⊂ E2, we have its preimage f−1(e2) = {b}×φ−1(k2).
Note that E2 is connected while φ−1(k2) ∈ F1 is discrete; for the same reasoning as above, φ−1(k2) =

F is in fact independent of k2. This is the discrete fiber F we have been looking for. Hence f is also
a covering map1. ■

2 Cylinder with ends pinched — π1 and universal cover:

Y = (X × I)/(X × ∂I) , I = [0, 1] (1)

Note that Y is homeomorphic to two cones2 CX1

⨿
CX2 with “bases” Xi ⊂ CXi and “vertices”

vi respectively identified: X1 ∼ X2, v1 ∼ v2 ≡ v. X is path connected and so is Y , hence we are free
to choose π1(Y ) = π1(Y, y0).

First note that paths that do not pass through the vertex v are all homotopic, since they are
contained in a cone and cones are contractible3. Therefore all contributions to π1(Y ) are loop
classes that do pass through the vertex v. In other words, morphisms in Π1Y are in one-to-one
correspondence with morphisms in:

Π1

(
[0, 1]/0∼1

)
= Π1S

1 (2)

Therefore, π1(Y ) ∼= π1(S
1) = Z. □

1 Reference: math.stackexchange.com/a/109774.
2 See discussions from Problem Set №1.
3 [γ1] = [γ2 ⋆ γ−1

2 ⋆ γ1] = [γ2].

https://math.stackexchange.com/a/109774
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The universal cover Ỹ of Y can be constructed by assigning an induced topology to the space
of path classes, same as in the general proof of its existence. Since Y is “degenerate” at its vertex,
this is equivalent to “cutting open” Y at its vertex v, and joining Z copies them end-to-end. More
explicitly, it can be written as:

Ỹ = (X × R)
/
∼ , (x, n) ∼ (x′, n), ∀ x ∈ X, n ∈ Z (3)

While the covering map: Ỹ 3 [x, t] 7→ [x, t− btc] ∈ Y , here btc is the integer part of t ∈ R. ■

3 π1 of fiber in fibration:

X × {0} E

X × I B

p

f

∃ f̃

For F → E
p−→ B: fibration, by homotopy lifting property (HLP), any homotopy in B can be

uniquely lifted to path class in E, provided some “initial condition” X × {0}. This leads to the
following results:

(a) For B: simply-connected, take any loop class [γ̃] ∈ π1(E, e) as initial condition; its projection
[p ◦ γ̃] ∈ π1(B, b) =

{
[1b]

}
is trivial, i.e. p ◦ γ̃ ' 1b. By HLP, such homotopy can be lifted into E,

i.e.
p ◦ γ̃ ' 1b

lift
===⇒ γ̃ ' γ̃′, p ◦ γ̃′ = 1b (4)

In other words, γ̃ ' γ̃′ ⊂ p−1(b), i.e. any loop in E is homotopic to some loop in p−1(b) ∼= F . This
implies a surjective group homomorphism π1(p

−1(b), e) → π1(E, e), i.e. an epimorphism. □

(b) For E: simply-connected, take any loop class [γ] ∈ π1(B, b) and consider its lifting [γ̃]. Note
that in general γ̃ is not a loop; however, we have p ◦ γ̃ = γ, hence γ̃(0), γ̃(1) ∈ p−1(b). In general, we
have:

γ ' γ′ lift
===⇒ γ̃ ' γ̃′, p ◦ γ̃(′) = γ(′) (5)

By continuity, γ̃(0), γ̃′(0) ∈ F0: a path component of p−1(b); similarly, γ̃(1), γ̃′(1) ∈ F1. In other
words, the start and end points of γ̃ are confined in path components F0 and F1, respectively. Hence
a loop class in π1(B, b) maps to transport between path components:

T(·)(e) : π1(B, b) −→ π0

(
p−1(b)

)
[γ] 7−→ T[γ](e)

(6)

As a matter of fact, T(·)(e) is a bijection. For T[γ] = T[γ′], they are characterized by two lifted
paths γ̃, γ̃′; since E is simply connected, they are always homotopic: γ̃ ' γ̃′, hence [γ] = [γ′] by
projection p. This means that T is injective. Surjectivity also follows from projection γ = p ◦ γ′.
Therefore, T(·)(e) gives a bijection between π1(B, b) and π0

(
p−1(b)

)
. ■

4 Pull-back of fibration is fibration:
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Y × {0} f∗(E) E

Y × I X B

p

G

∃ F̃ (HLP)
∃ G̃

f

(x, e) ∈ f∗(E) ⊂ X × E, f(x) = p(e)

We need only verify that f∗(E) → X also has HLP, i.e. the existence of F̃ in the above diagram4.
By HLP of E p−→ B, ∃ F̃ : Y × I → E as shown above. We can use F̃ to construct G̃ explicitly; in
fact, first consider:

G̃ : Y × I −→ X × E

(y, t) 7−→
(
G(y, t), F̃ (y, t)

) (7)

Note that f ◦G = p ◦ F̃ ; compared with the definition of f∗(E), this implies that the image of G̃ lies
within f∗(E) ⊂ X × E, hence after restriction of its codomain, G̃ becomes a well-defined lifting of
G into f∗(E). Therefore, f∗(E) → X has HLP, i.e. it is also a fibration. ■

5 More properties of fibration:

(a) By HLP, given any initial condition e ∈ p−1(b1), lifting of any path b1
γ−→ b2 exists. The lifted

path with dependence of e can then be written as F : p−1(b1)× I → E. This is just a generalization
of 3 for non-loop paths. □

(b) Similarly, transport T[γ] defined in 3 can be generalized for non-loop paths. T[γ] is well-
defined for path class [γ], since by HLP homotopic paths can be lifted to homotopy in E. Therefore,
the transport is fixed up to homotopy, i.e.

T : HomΠ1B(b0, b1) −→ Hom hTop
(
p−1(b0), p

−1(b1)
)

[γ] 7−→ T[γ]

(8)

Note that T defined in this way is also independent of the choice of F , since F simply specifies
the starting point of the lifted path; no matter which F we choose, the lifted paths will always be
homotopic in E. Hence T is well-defined in the above sense. □

(c) T defined above is a functor: Π1B → hTop. To verify this, we need only check that
it is compatible with composition and maps identity morphisms to identity morphisms. Indeed,
T[1b] = [1p−1(b)], and T[γ′]⋆[γ] = T[γ′⋆γ] = T[γ′] ◦ T[γ] by joining two lifted paths (up to homotopy). □

(d) For B: path connected, there exists an isomorphism between any two objects in Π1B (a
path connecting any two points in B), which is mapped to isomorphisms between fibers p−1(b) in
hTop. Hence any two fibers of E p−→ B have the same homotopy type. ■

4 Notice that f∗(E) is the limit of the diagram, hence this is automatically true by the universal property of f∗(E).
I would like to thank 刘逸华 for pointing this out. For now, we will stick to a more traditional proof.


