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Equivalence of categories is fully faithful:

F: C — D equivalence of categories, i.e. 3 G: D — C, s.t.
GOFﬁ]lc, FOGﬁﬂD (1)
Here “~” means naturally isomorphic as functors, i.e.,

d7:GoF =1¢, o0:FoG = 1p: natural isomorphisms (2)

By the definition of natural transformation, for f € Home(A, B), we have:

GoF(A) D o F(B)

A : B

tpo(GoF)(f)ory' =f V¥ feHome(4, B) (3)

Here 74 p are isomorphisms, which means that G o F' must be a bijection between hom-sets, which

further implies that F' is injective and G is surjective. Switch the roles of F, G, we find that G is

injective and F' is surjective. Therefore, F', G are both fully faithful. |
Forgetful functors to Set are often representable:

For F': Group — Set, consider the free group generated by a single element Z. We have:

Hom(Z,—): Group — Set
G — Hom(Z,G)
This is a covariant functor representable by Z.

On the other hand, Hom(Z, G) consists of group homomorphisms:

_)Z -G
Hom(Z7G)—{1|_>g’geG} (5)
More specifically, to fix any Z — G, we need only assign its generator’ 1 +— ¢g. Image of any
other Z element is generated automatically from the group law, without further specifications. This
means that the hom-set is in one-to-one correspondence with G elements (as a set). Therefore,
F = Homgrouwp(Z, —), i.e. forgetful F': Group — Set is representable by Z. O

Similarly, for F': Ring — Set, the free object generated by some generic element x is Z[z], the
polynomial ring in one variable; we have:

o= Homm(Z[l‘], —), Homm(Z[ﬂf], R) = {Z[xa]j : 1]"{

re R} (6)

Lesson: Forgetful Cat — Set are often representable by the free object in Cat. [ |

1 Note that 0 € Z is the group identity of addiction group Z, not 1 € Z.



Properties of contractible space:

(a) X contractible: 1x ~ fo: X — X some constant map, fo(X) = {xo}. We can restrict the
codomain of fy so that fo: X — {x0}, in this way we have:

X L {20} o X ~ 1y, (7.1)
{wo} = X % (w0} =~ 140y, (7.2)

This means that fo: X — {z¢} isomorphic in hTop = Top/ ~, which is precisely the definition of
homotopic equivalence X ~ {z¢}. (=)

On the other hand (<), if X ~ {x¢}, there exists some fo: X — {xo} that fulfills (7). We can
then extend the codomain s.t. fo: X — X, in this way (7.1) reads fo ~ 1, i.e. X is contractible.
Therefore, X contractible iff. homotopic equivalent to a single point. L_I®)

(b) V X: Topological space, we can define its cone as?:

CX = (X xI)/(X x{0}), I=][0,1] (8)
i.e. gluing together one end of the cylinder X x I. Naturally X C C'X as a subspace; now we show
that CX is contractible. Using (a), we need only show that 1ox ~ fo some constant map.

In fact, any point in CX can be uniquely labeled by [z, h] € X X I, with the exception of the
vertex v ~ [z,0] ~ [2/,0], V 2,2’ € X. We can then construct a homotopy F' by shrinking the cone

towards the vertex v:
F:CXxI—CX, F([a:,h],t) =[z,h-t],

Flexxo=v=const, Floxx1=1x

This confirms that 1ox ~ v: constant map. By (a), CX is contractible. u,

(¢) For Y ~ {yo} contractible, given any g: X — Y, we can deform the image g(X) C Y to a
single point, hence g ~ yy: constant map. More precisely, we have:

IG: X xI—Y, st. Glxxo=yo=const, G|xx1=g (10)
Such G can be explicitly constructed using 1y =~ yo:
F:YxI—=Y, Flyxo=yo=const, Flyxi =1y, (11)

Gla,t) = F(g(a).1) (12
In summary, we have proven that g ~ yo, V g € Homrep(X,Y). By definition, this means that
Homyrop (X, Y') = Homrep (X, Y)/g = {[yo]} a single point. LI

(d) For X ~ {z(} contractible, similar to (11), we have homotopy F: X x I — X. Given any
f: X =Y, the composition fo F: X x I =Y yields f ~ f(x¢): constant map.

2 See Wikipedia: Cone (topology).


https://en.wikipedia.org/wiki/Cone_(topology)

3

Furthermore, for Y: path connected, there is a path v: I — Y connecting f(z) and some yg € Y,
therefore f(zo) ~ yo: X — Y constant maps. More precisely, we have:

il =Y, 70)=yo, Y(1)=f(20),G: X xI =Y, G(z,t)=7(t) (13)

Which gives f(zo) =~ yo, V f, independent of the choice of f. This means that f ~ f(xg) =~ yo:
constant map, therefore HomM(X YY) = {[yo]} a single point. LY

Example of homotopic inequivalence?:

X:{O}u{1

n

n€Z+}, Y ={0}UZ, "

X,Y C R: subspace topology

Assume X =~ Y, then similar to (7), we have Y 4 X Ly~ 1y. However, note that Y has discrete
topology, in such case any map f o g homotopic to 1y must be 1y itself: fog=1y.

More specifically, consider:
F:YXI—)K F|y><0:fog, F‘yxlzl].y (15)

Any point n € Y is both open and closed, therefore its pre-image F~!(n) C Y x I is also both
open and closed, and by F|yx1 = 1y we know that F(y,1) =y, (y,1) € F~!(y), therefore the only
possibility is that F/({y} x I) =y, i.e. fog = 1y, which implies that g is injective and f is surjective.

However, f: X — Y cannot be surjective due to the complication around 0 € X. Consider
f71(f(0)) >0, since f(0) € Y both open and closed, f~*(f(0)) C X must also be both open and
closed. But any open set U C X is induced via subspace topology X C R; for 0 e U C X C R, U
must contain co-many elements:

1
n
Hence f(X) = f(0) U f({2|n < No}), f(X) CY a finite set, i.e. f: X — Y is never surjective.
Therefore, X Y by contradiction. ]

nzNo} cUC f'(f(0)), for some Ny, for any U >z (16)

3 This proof is produced thanks to helpful insights from % # and 7 F#.



Fundamental group of topological group is abelian?:

From a categorical point of view, the fundamental group w1 (G) of a topological group G can be
seen as a functor:
G € TopGroup — Top — Group > 7(G) (17)

TopGroup C Top is a subcategory with additional group structure, i.e. (G,-) € TopGroup is a
group object® in Top, with “-” denoting its product operation (-): G x G — G. Correspondingly,
7m1(TopGroup) should be group objects of Group, which have an additional group structure (x) =

71(+), along with the usual group product “+” in Group.

In total, we have three different group structures (represented by their product operation):

(): GxG— G, (18)
(x): m(G) x 1 (G) = m1(G), (19)
() =m(-): m(G) x m(G) = m(G), (20)

Note that 71(G) = Aut, (g) Lg, i.e. loop classes [y] in G; (x) is defined as joining two loops, while
(%) = m1(+) is defined as the translation of loop classes by pointwise group product (-),

[l * 2] = [ - 72l (21)

With the above definitions, we observe that:

([ya] * [v2]) * (Im] * [m2]) = ([ya] = Im]) * ([v2] * [12]) (22)

By definition, they are both equal to [(y1 - 72) * (11 - 72)]. What’s surprising is that by using only
the group axioms and “distributive law” (22), we can show that (x) and (%) must always coincide:
(x) = (x), and they have to be in fact, commutative. This is the Eckmann—Hilton argumentS.

Proof of this argument is straight-forward; first, observe that the units of the two operations
coincide:

(22)

Ti =1, x 1, = (L% 1) % (1 % 1) (Lax 1) x (Lo x 1) = Lux 1, = 1, (23)

Further manipulation using (22) confirms that the two operations coincide and are commutative:

] ) = (1% () (] % 1) 2222 (1% ) = (7] % 1)
=[] *[] o (24)
= ([ 1) % (1% (7)) 22 ([) 1) = (1% [7)
= [n]*[7]

In summary, we find that the group objects in Group are indeed abelian groups, which means
that 71 (G) for G € TopGroup must be abelian. |

This proof is produced with the help of math.stackexchange.com/q/727999. Another (easier) proof lies in the fact

that group translation induces w1 conjugation, therefore v—1

a7y = «, hence abelian.
See Wikipedia: Group object.

See Wikipedia: Eckmann-Hilton argument.
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