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1 Equivalence of categories is fully faithful:

F : C → D equivalence of categories, i.e. ∃ G : D → C, s.t.

G ◦ F ' 1C , F ◦G ' 1D (1)

Here “'” means naturally isomorphic as functors, i.e.,

∃ τ : G ◦ F ⇒ 1C , σ : F ◦G ⇒ 1D : natural isomorphisms (2)

By the definition of natural transformation, for f ∈ HomC(A,B), we have:

G ◦ F (A) G ◦ F (B)

A B

G◦F (f)

τA τB

f

τB ◦ (G ◦ F )(f) ◦ τ−1
A = f, ∀ f ∈ HomC(A,B) (3)

Here τA,B are isomorphisms, which means that G ◦ F must be a bijection between hom-sets, which
further implies that F is injective and G is surjective. Switch the roles of F,G, we find that G is
injective and F is surjective. Therefore, F,G are both fully faithful. ■

2 Forgetful functors to Set are often representable:

For F : Group → Set, consider the free group generated by a single element Z. We have:

Hom(Z,−) : Group −→ Set
G 7−→ Hom(Z, G)

(4)

This is a covariant functor representable by Z.

On the other hand, Hom(Z, G) consists of group homomorphisms:

Hom(Z, G) =

{
Z → G
1 7→ g

∣∣∣∣ g ∈ G

}
(5)

More specifically, to fix any Z → G, we need only assign its generator1 1 7→ g. Image of any
other Z element is generated automatically from the group law, without further specifications. This
means that the hom-set is in one-to-one correspondence with G elements (as a set). Therefore,
F ∼= HomGroup(Z,−), i.e. forgetful F : Group → Set is representable by Z. □

Similarly, for F : Ring → Set, the free object generated by some generic element x is Z[x], the
polynomial ring in one variable; we have:

F ∼= HomRing(Z[x],−), HomRing(Z[x], R) =

{
Z[x] → R

x 7→ r

∣∣∣∣ r ∈ R

}
(6)

Lesson: Forgetful Cat → Set are often representable by the free object in Cat. ■

1 Note that 0 ∈ Z is the group identity of addiction group Z, not 1 ∈ Z.
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3 Properties of contractible space:

(a) X contractible: 1X ' f0 : X → X some constant map, f0(X) = {x0}. We can restrict the
codomain of f0 so that f0 : X → {x0}, in this way we have:

X
f0−→ {x0} ↪→ X ' 1X , (7.1)

{x0} ↪→ X
f0−→ {x0} ' 1{x0}, (7.2)

This means that f0 : X → {x0} isomorphic in hTop = Top/ ', which is precisely the definition of
homotopic equivalence X ' {x0}. (⇒)

On the other hand (⇐), if X ' {x0}, there exists some f0 : X → {x0} that fulfills (7). We can
then extend the codomain s.t. f0 : X → X, in this way (7.1) reads f0 ' 1X , i.e. X is contractible.
Therefore, X contractible iff. homotopic equivalent to a single point. ■ (a)

(b) ∀ X: Topological space, we can define its cone as2:

CX = (X × I)/(X × {0}), I = [0, 1] (8)

i.e. gluing together one end of the cylinder X × I. Naturally X ⊂ CX as a subspace; now we show
that CX is contractible. Using (a), we need only show that 1CX ' f0 some constant map.

In fact, any point in CX can be uniquely labeled by [x, h] ∈ X × I, with the exception of the
vertex v ∼ [x, 0] ∼ [x′, 0], ∀ x, x′ ∈ X. We can then construct a homotopy F by shrinking the cone
towards the vertex v:

F : CX × I → CX, F
(
[x, h], t

)
= [x, h · t],

F |CX×0 = v = const, F |CX×1 = 1X

(9)

This confirms that 1CX ' v: constant map. By (a), CX is contractible. ■ (b)

(c) For Y ' {y0} contractible, given any g : X → Y , we can deform the image g(X) ⊂ Y to a
single point, hence g ' y0: constant map. More precisely, we have:

∃ G : X × I → Y, s.t. G|X×0 = y0 = const, G|X×1 = g (10)

Such G can be explicitly constructed using 1Y ' y0:

F : Y × I → Y, F |Y×0 = y0 = const, F |Y×1 = 1Y , (11)

G(x, t) = F
(
g(x), t

)
(12)

In summary, we have proven that g ' y0, ∀ g ∈ HomTop(X,Y ). By definition, this means that
HomhTop(X,Y ) = HomTop(X,Y )

/
≃ =

{
[y0]

}
a single point. ■ (c)

(d) For X ' {x0} contractible, similar to (11), we have homotopy F : X × I → X. Given any
f : X → Y , the composition f ◦ F : X × I → Y yields f ' f(x0): constant map.

2 See Wikipedia: Cone (topology).

https://en.wikipedia.org/wiki/Cone_(topology)
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Furthermore, for Y : path connected, there is a path γ : I → Y connecting f(x0) and some y0 ∈ Y ,
therefore f(x0) ' y0 : X → Y constant maps. More precisely, we have:

γ : I → Y, γ(0) = y0, γ(1) = f(x0), G : X × I → Y, G(x, t) = γ(t) (13)

Which gives f(x0) ' y0, ∀ f , independent of the choice of f . This means that f ' f(x0) ' y0:
constant map, therefore HomhTop(X,Y ) =

{
[y0]

}
a single point. ■ (d)

4 Example of homotopic inequivalence3:

X = {0} ∪
{
1

n

∣∣∣∣n ∈ Z+

}
, Y = {0} ∪ Z+

X,Y ⊂ R : subspace topology
(14)

Assume X ' Y , then similar to (7), we have Y
g−→ X

f−→ Y ' 1Y . However, note that Y has discrete
topology, in such case any map f ◦ g homotopic to 1Y must be 1Y itself: f ◦ g = 1Y .

More specifically, consider:

F : Y × I → Y, F |Y×0 = f ◦ g, F |Y×1 = 1Y (15)

Any point n ∈ Y is both open and closed, therefore its pre-image F−1(n) ⊂ Y × I is also both
open and closed, and by F |Y×1 = 1Y we know that F (y, 1) = y, (y, 1) ∈ F−1(y), therefore the only
possibility is that F ({y}×I) = y, i.e. f ◦g = 1Y , which implies that g is injective and f is surjective.

However, f : X → Y cannot be surjective due to the complication around 0 ∈ X. Consider
f−1

(
f(0)

)
3 0, since f(0) ∈ Y both open and closed, f−1

(
f(0)

)
⊂ X must also be both open and

closed. But any open set U ⊂ X is induced via subspace topology X ⊂ R; for 0 ∈ U ⊂ X ⊂ R, U
must contain ∞-many elements:{

1

n

∣∣∣∣n ≥ N0

}
⊂ U ⊂ f−1

(
f(0)

)
, for some N0, for any U 3 x (16)

Hence f(X) = f(0) ∪ f(
{

1
n |n < N0

}
), f(X) ⊂ Y a finite set, i.e. f : X → Y is never surjective.

Therefore, X 6' Y by contradiction. ■

3 This proof is produced thanks to helpful insights from 谷夏 and 於子雄.
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5 Fundamental group of topological group is abelian4:

From a categorical point of view, the fundamental group π1(G) of a topological group G can be
seen as a functor:

G ∈ TopGroup ↪−→ Top π1−−→ Group 3 π1(G) (17)

TopGroup ⊂ Top is a subcategory with additional group structure, i.e. (G, ·) ∈ TopGroup is a
group object5 in Top, with “·” denoting its product operation (·) : G × G → G. Correspondingly,
π1(TopGroup) should be group objects of Group, which have an additional group structure (?) =

π1(·), along with the usual group product “∗” in Group.

In total, we have three different group structures (represented by their product operation):

(·) : G×G → G, (18)
(∗) : π1(G)× π1(G) → π1(G), (19)

(?) = π1(·) : π1(G)× π1(G) → π1(G), (20)

Note that π1(G) = AutΠ1(G) 1G, i.e. loop classes [γ] in G; (∗) is defined as joining two loops, while
(?) = π1(·) is defined as the translation of loop classes by pointwise group product (·),

[γ1] ? [γ2] = [γ1 · γ2] (21)

With the above definitions, we observe that:

([γ1] ? [γ2]) ∗ ([η1] ? [η2]) = ([γ1] ∗ [η1]) ? ([γ2] ∗ [η2]) (22)

By definition, they are both equal to [(γ1 · γ2) ∗ (η1 · η2)]. What’s surprising is that by using only
the group axioms and “distributive law” (22), we can show that (?) and (∗) must always coincide:
(?) = (∗), and they have to be in fact, commutative. This is the Eckmann–Hilton argument6.

Proof of this argument is straight-forward; first, observe that the units of the two operations
coincide:

1⋆ = 1⋆ ? 1⋆ = (1∗ ∗ 1⋆) ? (1⋆ ∗ 1∗)
(22)
==== (1∗ ? 1⋆) ∗ (1⋆ ? 1∗) = 1∗ ∗ 1∗ = 1∗ (23)

Further manipulation using (22) confirms that the two operations coincide and are commutative:

[γ] ∗ [η] = (1 ? [γ]) ∗ ([η] ? 1) (22)
==== (1 ∗ [η]) ? ([γ] ∗ 1)

= [η] ? [γ]

= ([η] ∗ 1) ? (1 ∗ [γ]) (22)
==== ([η] ? 1) ∗ (1 ? [γ])

= [η] ∗ [γ]

(24)

In summary, we find that the group objects in Group are indeed abelian groups, which means
that π1(G) for G ∈ TopGroup must be abelian. ■

4 This proof is produced with the help of math.stackexchange.com/q/727999. Another (easier) proof lies in the fact
that group translation induces π1 conjugation, therefore γ−1αγ = α, hence abelian.

5 See Wikipedia: Group object.
6 See Wikipedia: Eckmann–Hilton argument.

https://math.stackexchange.com/q/727999
https://en.wikipedia.org/wiki/Group_object
https://en.wikipedia.org/wiki/Eckmann%E2%80%93Hilton_argument

