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1 Symmetry & Noether’s Theorem

1.1

1.2

2D o-Model

1 1
L= =5 Napllpy 0" X" 0°XY = =2 0°X, 0 X", XV e RVPT (1)

e For 6X" = a* + M\, X" the Lagrangian (density) transforms as follows:

0L =—-0%X,,0,6X"
= —0%X,, 0a(a" + X, X")
= —0%X,, (0at” + X" 0uA", + A, 0,.X") (2)
= —0°X,, 050" — 0 X" 0, X" Ay — XV 0“X" Oa A
= —0%X,, 050" — 0" X" 00 X" Ay — X” O X Do A
Since a* and A, are independent, imposing 6L = 0 yields d,a* = 0, a = const. Furthermore,

if L = 0 is to hold for arbitrary X* fields, then 0o\ = 0, A() = 0, i.e. Ay, is constant and
anti-symmetric over its indices.

Promote X — €(x) 0X = e(x) (a* + M, X"), with e(x) some localized bump function; using
(2) and considering on-shell variation, we have:

0=169=— / d*z (0% X, a" One + X 0" X" N One)
3)
= —/dzx (8@)(“ a" + X}, 09X, Al ) On€

It is then evident (after partial integration) that the following currents are conserved; they are
the Noether currents associated with a* and A

1
iy ==X g ==X 07X, = 5 (X, 0°X, — X, 0°X,) (4)

Conserved charge Q = [ d%z j%(z), we have:
P, = f/d:vl X, = /dxl 00X, My, = % /dxl (X, 00X, — X, 00X,) (5)

They can be interpreted as spacetime momentum and spacetime angular momentum. |

Real Scalar in (3+1)D

L= —%8“¢8H¢— %mZ(;SQ (6)

For ¢: scalar, under ' = Aoz, ¢(x) — ¢'(z), while:
¢'(a') = d(z) = ¢/(x) =¢(A\ " o) (7)
For A ~ M. Lorentz transformation, 7,, A", A", = 7,s, or equivalently, ADHH, = A0

Therefore,

¢'(a") = p(A7! 0 at) = (2" A1) (8)
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o Under 2’* = A\ a¥, we have:

1 1
El(.'lf/) _ _5 6lp,¢/(x/) a;(b/(aj/) _ § m2¢/2(m/)
1 1
= 5 9" () Ob(a) 5 m2¢2(x)
1 ox? x7 1
— =g — Zm2¢? 9)
T () S ,0(a) — 5 (@)
1
= L 00(w) Dp0la) — 5 ()
= L(z)
Here We’ve used n*v g;,ﬂ gj,l, ="\, PA,°7 =17, Furthermore, 8" = [d*z L'(z) = [d*2' £'(2') =
[ d*a’ L(z) = [d*z L(x) = S, hence the action is invariant under Lorentz transformatlon.

o Consider an infinitesimal Lorentz transformation: A ~ 1 4+ w, then 1, A" A", = 1,, implies
that w,,, is anti-symmetric: w,, +w,, = 0. For ozt = wh,z¥, we have:

3¢

dp = 6:1:“ = —w", 2" 0,0 (10)

To obtain the corresponding Noether charges, we can simply repeat the operations done in
our previous problem; alternatively, we can try to derive a general recipe': for £ = £(¢, 0,0)
and S = [d*z £, we have:

6S:/d4x5£
[ (oc oL
-/ x(a¢ % 50 ‘56’”5) ()
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If we vary S w.r.t. a symmetry of the system, we will have §£ = 0, K* some total derivative;
when on-shell, such variation gives the conserved current with boundary term K*:

oL

= 6 — (12)
9(9,9)
Back to our Lorentz transformation d¢ = —w*,x"0,¢, we have symmetry variation:
0L = —w, 2”0, L = =0, (w",z" L) (13)

We can write this down without explicit calculations, since we know L itself is a Lorentz scalar,
and that’s how scalar transforms under Lorentz transformations.

This gives a boundary term K* = —w", z”L, and the Noether current and its corresponding
conserved charge can be calculated as follows:

L o oL _
I (3(8# 5500 02L), (14)
Q:/d3xj0:—w"y/d?’xx”(@o(ﬁagqb—(sgﬁ)v (15)

1 References: arXiv:1601.03616 and Tong: http://damtp.cam.ac.uk/user/tong/qft.html


https://arxiv.org/abs/1601.03616
http://damtp.cam.ac.uk/user/tong/qft.html
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Note that w*, is arbitrary, therefore @) can be decomposed into independent charges:

1
Q= inM‘“’, MW = — /dgx 2zl (60¢8”]¢ — n"]oﬁ), (16)

The indices of M*" are anti-symmetrized to match the degrees of freedom in w,,. Note that
the £ term only appears when one of the indices is 0.

Note that the canonical momentum:

w= ==t a7)
It is thus natural to re-organize M% in the following way:
MY% = —M*° = —/d3a: (w (x°ai — miao) ¢ — xi[,)
= / d*z (mow '+ ' (wd — E)) (18)
=— / Pz (2% 0°¢ + 2'H)

We’ve obtained an interesting result: the expression for the boost generator M contains
the Hamiltonian density H, weighted by the radial distance z. This is natural since a boost
does indeed contains time evolution for excitations away from the origin. It’s an important
result utilized by the so-called Rindler decomposition; in fact, M becomes the Hamiltonian
for an accelerated observer in the Rindler patch?.

For M%7, we have:
MY = — /d%qB (/07 —279") ¢ (19)
This is interpreted as the angular momentum of the field ¢. Suppose ¢ is a wave packet
localized around x with momentum == k, then we have the classical angular momentum up to

some factor:
MY ~ (2K — 27kY) /d3x E¢®, E=Vk?+m? (20)

The [d*z E¢? factor in the above expression is an O(1) normalization constant for a
particle-like wave packet; to see this, note that ¢ € R has a phase factor ¢ ~ ae™™® +

ate™ ™ ~ cos (k- z),

E= /d%% = /d% (%452 + %(qu)2 + %m2¢2 4o ) ~ (E2 +KE 4 m? At ) /dg’x%qﬁ (21)
E/d3:c * ~ 1, (22)
Indeed, we have: M ~ (2'k? — 27k*).
Canonical quantization:

[6(x), w(y)] = [¢(x), $(y)] = i(x ~y) (23)

Other equal-time commutators between ¢,w all just vanish. Operator products are then
regularized by normal ordering: M + : M :, which can be explicitly implemented by normal

2 See the lecture notes of Tom Hartman: hartmanhep.net/topics2015/gravity-lectures.pdf or Daniel Harlow

arXiv:1409.1231.


http://hartmanhep.net/topics2015/gravity-lectures.pdf
https://arxiv.org/abs/1409.1231
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ordering of the oscilator modes:

3
$(x) = / (gﬂ')“g \/%Tk (are™ +ale™), far,al] = @m)*5(k ~ K) (24)

The k dependence in ag, Ey is, in fact, only a k dependence; we’ve dropped the boldface in
the subscripts simply for convenience.

For example, the first term in M% = —M© can be expanded as:
—z /dgscwaiqb = xo/ &k k'alay = 2°P (25)
(2m)3 "k

Here P* is the momentum operator on the Hilbert space, promoted from the classical —i0*.
MY ig thus further reduced to:

MOi:_M’O:xOPi—/dexiH (26)
We note that this result is almost the classical 20 P? — z?PY, but here 2°P° is replaced with

the integral over energy density 7. The result can be nicely re-written with the stress tensor
T just run the Noether’s procedure with dz# = e, then we shall obtain:

J = T, T = 0%+ L,
Q' =e, P, P'= /d3xT“0 = /dgx (30¢ oMo + nO”E) (27)

MW = /d3x2x[“T”]0

The quantization M ~ :M: is thus reduced to the quantization of T%°, weighted by a x*
factor.

First let’s look at 7%° = #; note that:

/dgx rle®* = (21)3 (—i 82

One can then check explicitly with mode expansion that, up to normal ordering, we have?:

) 5(k) (28)

H= [ dzH= di))7]€E ala (29)

= = (277)3 k Gk,

) - d3k 0
OZ = /dBJ} 3;‘7‘7'[ = / (27(_)3 Ek GE <+Z ak)a]“ (30)

At first glance, derivative of aj, = ai with respect to k* seems puzzling; however, note that

(+i %) is precisely the z° operator in “momentum-space”, and one can make sense of it by
k2

3 See a similar result in https://physics.stackexchange.com/q/27906. Moreover, the charge can be computed at
arbitrary time slice ¢, but the ¢-dependence (~ eiiEt) drops out in the final result, due to the on-shell condition

Ei = k2 + m? and symmetries, e.g. fd3k k* = 0. Note that %% = }I;;



https://physics.stackexchange.com/q/27906
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considering a generic n-particle state:

0) (31)

n

|T) = /d3l<;1---d3kn\ll(k1,--- 7kn)a21 "'GL

Where ¥(ky,--- ,ky) is the n-particle wave function; using aka;rc, = a,t,,ak + (27)36(k — k)
recursively, we get in the end that:

- 0
0; | W) = /d3k1-~~d3kn{ Y B, (Haki) U(ky, - ,kn)}a;rﬁ eal 0) (32)
m=1 m

We see that indeed O; acts as Ey, (—l—i %) on the momentum-space n-particle wave function,
consistent with the result of ordinary quantum mechanics; ...

TODO: Detailed analysis! HINT: Ward identity!

Notice that 29" = 1 (219" — z¥0") = LD is the Killing vector fields of R, hence
they naturally follow the commutation relations of s0(3,1) (up to a constant coefficient, or an

isomorphism)*. We have:

pw el _ 3, 3y (6D ¢(x), bDP7
2] = [ @ [ @by (5D o(w). 60 o(0)] -
:/dgx(i)[Dlw’ng]¢

Similar holds for M. Therefore, M*"’s indeed form the Lie algebra s0(3,1). |

4 1 would like to thank # 4% for pointing this out.
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