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1 Symmetry & Noether’s Theorem

1.1 2D σ-Model

L = −1

2
ηαβ ηµν ∂

αXµ ∂βXν = −1

2
∂αXµ ∂αX

µ, Xµ ∈ R1,D−1 (1)

• For δXµ = aµ + λµ
νX

ν , the Lagrangian (density) transforms as follows:

δL = −∂αXµ ∂α δXµ

= −∂αXµ ∂α(a
µ + λµ

νX
ν)

= −∂αXµ (∂αa
µ +Xν ∂αλ

µ
ν + λµ

ν ∂αX
ν)

= −∂αXµ ∂αa
µ − ∂αXµ ∂αX

ν λµν −Xν ∂αXµ ∂αλµν

= −∂αXµ ∂αa
µ − ∂αXµ ∂αX

ν λ(µν) −Xν ∂αXµ ∂αλµν

(2)

Since aµ and λµ
ν are independent, imposing δL = 0 yields ∂αa

µ = 0, a = const. Furthermore,
if δL = 0 is to hold for arbitrary Xµ fields, then ∂αλµν = 0, λ(µν) = 0, i.e. λµν is constant and
anti-symmetric over its indices.

• Promote δX 7→ ϵ(x) δX = ϵ(x) (aµ + λµ
νX

ν), with ϵ(x) some localized bump function; using
(2) and considering on-shell variation, we have:

0 = δS = −
ˆ

d2x (∂αXµ a
µ ∂αϵ+Xν ∂αXµ λµν ∂αϵ)

= −
ˆ

d2x
(
∂αXµ a

µ +X[ν ∂
αXµ] λ

[µν]
)
∂αϵ

(3)

It is then evident (after partial integration) that the following currents are conserved; they are
the Noether currents associated with aµ and λ[µν]:

jαµ = −∂αXµ, jαµν = −X[ν ∂
αXµ] =

1

2
(Xµ ∂

αXν −Xν ∂
αXµ) (4)

Conserved charge Q =
´

d2x j0(x), we have:

Pµ = −
ˆ

dx1 ∂0Xµ =

ˆ
dx1 ∂0Xµ, Mµν =

1

2

ˆ
dx1 (Xν ∂0Xµ −Xµ ∂0Xν) (5)

They can be interpreted as spacetime momentum and spacetime angular momentum. ■

1.2 Real Scalar in (3 + 1)D

L = −1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 (6)

• For ϕ: scalar, under x′ = λ ◦ x, ϕ(x) 7→ ϕ′(x), while:

ϕ′(x′) = ϕ(x) =⇒ ϕ′(x) = ϕ(λ−1 ◦ x) (7)

For λ ∼ λµ
ν : Lorentz transformation, ηµνλ

µ
ρλ

ν
σ = ηρσ, or equivalently, (λ−1)µν = λ µ

ν .
Therefore,

ϕ′(xµ) = ϕ(λ−1 ◦ xµ) = ϕ(xνλ µ
ν ) (8)
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• Under x′µ = λµ
νx

ν , we have:

L′(x′) = −1

2
∂′µϕ′(x′) ∂′

µϕ
′(x′)− 1

2
m2ϕ′2(x′)

= −1

2
∂′µϕ(x) ∂′

µϕ(x)−
1

2
m2ϕ2(x)

= −1

2
ηµν

∂xρ

∂x′µ ∂ρϕ(x)
∂xσ

∂x′ν ∂σϕ(x)−
1

2
m2ϕ2(x)

= −1

2
ηρσ∂ρϕ(x) ∂σϕ(x)−

1

2
m2ϕ2(x)

= L(x)

(9)

Here we’ve used ηµν ∂xρ

∂x′µ
∂xσ

∂x′ν = ηµνλ ρ
µ λ σ

ν = ηρσ. Furthermore, S′ =
´

d4xL′(x) =
´

d4x′ L′(x′) =´
d4x′ L(x) =

´
d4xL(x) = S, hence the action is invariant under Lorentz transformation.

• Consider an infinitesimal Lorentz transformation: λ ∼ 1 + ω, then ηµνλ
µ
ρλ

ν
σ = ηρσ implies

that ωµν is anti-symmetric: ωµν + ωνν = 0. For δxµ = ωµ
νx

ν , we have:

δϕ = − ∂ϕ

∂xµ
δxµ = −ωµ

νx
ν ∂µϕ (10)

To obtain the corresponding Noether charges, we can simply repeat the operations done in
our previous problem; alternatively, we can try to derive a general recipe1: for L = L(ϕ, ∂µϕ)
and S =

´
d4xL, we have:

δS =

ˆ
d4x δL

=

ˆ
d4x

(
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ∂µϕ

)
=

ˆ
d4x

(
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)

)
δϕ+

ˆ
d4x ∂µ

(
∂L

∂(∂µϕ)
δϕ

) (11)

If we vary S w.r.t. a symmetry of the system, we will have δL = ∂µK
µ some total derivative;

when on-shell, such variation gives the conserved current with boundary term Kµ:

jµ =
∂L

∂(∂µϕ)
δϕ−Kµ (12)

Back to our Lorentz transformation δϕ = −ωµ
νx

ν∂µϕ, we have symmetry variation:

δL = −ωµ
νx

ν∂µL = −∂µ(ω
µ
νx

νL) (13)

We can write this down without explicit calculations, since we know L itself is a Lorentz scalar,
and that’s how scalar transforms under Lorentz transformations.
This gives a boundary term Kµ = −ωµ

νx
νL, and the Noether current and its corresponding

conserved charge can be calculated as follows:

jµ = −ωσ
νx

ν

(
∂L

∂(∂µϕ)
∂σϕ− δµσL

)
, (14)

Q =

ˆ
d3x j0 = −ωσ

ν

ˆ
d3xxν

(
∂0ϕ∂σϕ− δ0σL

)
, (15)

1 References: arXiv:1601.03616 and Tong: http://damtp.cam.ac.uk/user/tong/qft.html

https://arxiv.org/abs/1601.03616
http://damtp.cam.ac.uk/user/tong/qft.html
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Note that ωµ
ν is arbitrary, therefore Q can be decomposed into independent charges:

Q =
1

2
ωµνM

µν , Mµν = −
ˆ

d3x 2x[[µ
(
∂0ϕ∂ν]ϕ− ην]0L

)
, (16)

The indices of Mµν are anti-symmetrized to match the degrees of freedom in ωµν . Note that
the L term only appears when one of the indices is 0.

Note that the canonical momentum:

ϖ =
∂L
∂ϕ̇

= ϕ̇ = ∂0ϕ (17)

It is thus natural to re-organize M0i in the following way:

M0i = −M i0 = −
ˆ

d3x
(
ϖ

(
x0∂i − xi∂0

)
ϕ− xiL

)
= −

ˆ
d3x

(
x0ϖ∂iϕ+ xi

(
ϖϕ̇− L

))
= −

ˆ
d3x

(
x0ϖ∂iϕ+ xiH

) (18)

We’ve obtained an interesting result: the expression for the boost generator M i0 contains
the Hamiltonian density H, weighted by the radial distance xi. This is natural since a boost
does indeed contains time evolution for excitations away from the origin. It’s an important
result utilized by the so-called Rindler decomposition; in fact, M i0 becomes the Hamiltonian
for an accelerated observer in the Rindler patch2.

For M ij , we have:
M ij = −

ˆ
d3x ϕ̇

(
xi∂j − xj∂i

)
ϕ (19)

This is interpreted as the angular momentum of the field ϕ. Suppose ϕ is a wave packet
localized around x with momentum ≈ k, then we have the classical angular momentum up to
some factor:

M ij ∼
(
xikj − xjki

) ˆ
d3xEϕ2, E =

√
k2 +m2 (20)

The
´

d3xEϕ2 factor in the above expression is an O(1) normalization constant for a
particle-like wave packet; to see this, note that ϕ ∈ R has a phase factor ϕ ∼ a e+ik·x +

a†e−ik·x ∼ cos (k · x),

E =

ˆ
d3xH =

ˆ
d3x

(
1

2
ϕ̇2 +

1

2
(∇ϕ)2 +

1

2
m2ϕ2 + · · ·

)
∼

(
E2 + k2 +m2 + · · ·

) ˆ
d3x

1

2
ϕ2, (21)

E

ˆ
d3xϕ2 ∼ 1, (22)

Indeed, we have: M ij ∼
(
xikj − xjki

)
.

Canonical quantization:

[ϕ(x), ϖ(y)] = [ϕ(x), ϕ̇(y)] = iδ(x − y) (23)

Other equal-time commutators between ϕ,ϖ all just vanish. Operator products are then
regularized by normal ordering: M 7→ :M :, which can be explicitly implemented by normal

2 See the lecture notes of Tom Hartman: hartmanhep.net/topics2015/gravity-lectures.pdf or Daniel Harlow
arXiv:1409.1231.

http://hartmanhep.net/topics2015/gravity-lectures.pdf
https://arxiv.org/abs/1409.1231
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ordering of the oscilator modes:

ϕ(x) =

ˆ d3k

(2π)3
1√
2Ek

(
ake

ik·x + a†ke
−ik·x

)
, [ak, a

†
k′ ] = (2π)3δ(k − k′) (24)

The k dependence in ak, Ek is, in fact, only a k dependence; we’ve dropped the boldface in
the subscripts simply for convenience.

For example, the first term in M0i = −M i0 can be expanded as:

−x0

ˆ
d3xϖ ∂iϕ = x0

ˆ d3k

(2π)3
kia†kak = x0P i (25)

Here Pµ is the momentum operator on the Hilbert space, promoted from the classical −i∂µ.
M0i is thus further reduced to:

M0i = −M i0 = x0P i −
ˆ

d3xxiH (26)

We note that this result is almost the classical x0P i−xiP 0, but here xiP 0 is replaced with
the integral over energy density H. The result can be nicely re-written with the stress tensor
Tµν ; just run the Noether’s procedure with δxµ = ϵµ, then we shall obtain:

j′µ = ϵνT
µν , Tµν = ∂µϕ∂νϕ+ ηµνL,

Q′ = ϵµP
µ, Pµ =

ˆ
d3xTµ0 =

ˆ
d3x

(
∂0ϕ∂µϕ+ η0µL

)
Mµν =

ˆ
d3x 2x[µT ν]0

(27)

The quantization M 7→ :M : is thus reduced to the quantization of T ν0, weighted by a xµ

factor.

First let’s look at T 00 = H; note that:
ˆ

d3xxieik·x = (2π)3
(
−i

∂

∂ki

)
δ(k) (28)

One can then check explicitly with mode expansion that, up to normal ordering, we have3:

H =

ˆ
d3xH =

ˆ d3k

(2π)3
Ek a

†
kak, (29)

Oi =

ˆ
d3xxiH =

ˆ d3k

(2π)3
Ek a

†
k

(
+i

∂

∂ki

)
ak, (30)

At first glance, derivative of ak = ak with respect to ki seems puzzling; however, note that(
+i ∂

∂ki

)
is precisely the xi operator in “momentum-space”, and one can make sense of it by

3 See a similar result in https://physics.stackexchange.com/q/27906. Moreover, the charge can be computed at
arbitrary time slice t, but the t-dependence (∼ e±iEt) drops out in the final result, due to the on-shell condition
E2

k = k2 +m2 and symmetries, e.g.
´

d3k ki = 0. Note that ∂Ek
∂ki

= ki

Ek
.

https://physics.stackexchange.com/q/27906
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considering a generic n-particle state:

|Ψ〉 =
ˆ

d3k1 · · · d3kn Ψ(k1, · · · , kn) a
†
k1

· · · a†kn
|0〉 (31)

Where Ψ(k1, · · · , kn) is the n-particle wave function; using aka
†
k′ = a†k′ak + (2π)3δ(k − k′)

recursively, we get in the end that:

Oi |Ψ〉 =
ˆ

d3k1 · · · d3kn

{
n∑

m=1

Ekm

(
+i

∂

∂kim

)
Ψ(k1, · · · , kn)

}
a†k1

· · · a†kn
|0〉 (32)

We see that indeed Oi acts as Ek

(
+i ∂

∂ki

)
on the momentum-space n-particle wave function,

consistent with the result of ordinary quantum mechanics; ...

TODO: Detailed analysis! HINT: Ward identity!

Notice that x[µ∂ν] = 1
2 (x

µ∂ν − xν∂µ) = 1
2D

µν is the Killing vector fields of R3,1, hence
they naturally follow the commutation relations of so(3, 1) (up to a constant coefficient, or an
isomorphism)4. We have:

[Mµν ,Mρσ] =

ˆ
d3x

ˆ
d3y

[
ϕ̇Dµνϕ(x), ϕ̇Dρσϕ(y)

]
=

ˆ
d3x ϕ̇ [Dµν , Dρσ]ϕ

(33)

Similar holds for M i0. Therefore, Mµν ’s indeed form the Lie algebra so(3, 1). ■

4 I would like to thank 林般 for pointing this out.
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